File size: 2,594 Bytes
3a3b216
 
 
 
 
 
 
 
 
 
d02622b
3a3b216
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3226ae7
 
3a3b216
3226ae7
 
 
 
 
 
 
 
d02622b
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
from __future__ import annotations

import abc
import re
from typing import Any, List, Optional

from graphgen.bases.base_tokenizer import BaseTokenizer
from graphgen.bases.datatypes import Token


class BaseLLMWrapper(abc.ABC):
    """
    LLM client base class, agnostic to specific backends (OpenAI / Ollama / ...).
    """

    def __init__(
        self,
        *,
        system_prompt: str = "",
        temperature: float = 0.0,
        max_tokens: int = 4096,
        repetition_penalty: float = 1.05,
        top_p: float = 0.95,
        top_k: int = 50,
        tokenizer: Optional[BaseTokenizer] = None,
        **kwargs: Any,
    ):
        self.system_prompt = system_prompt
        self.temperature = temperature
        self.max_tokens = max_tokens
        self.repetition_penalty = repetition_penalty
        self.top_p = top_p
        self.top_k = top_k
        self.tokenizer = tokenizer

        for k, v in kwargs.items():
            setattr(self, k, v)

    @abc.abstractmethod
    async def generate_answer(
        self, text: str, history: Optional[List[str]] = None, **extra: Any
    ) -> str:
        """Generate answer from the model."""
        raise NotImplementedError

    @abc.abstractmethod
    async def generate_topk_per_token(
        self, text: str, history: Optional[List[str]] = None, **extra: Any
    ) -> List[Token]:
        """Generate top-k tokens for the next token prediction."""
        raise NotImplementedError

    @abc.abstractmethod
    async def generate_inputs_prob(
        self, text: str, history: Optional[List[str]] = None, **extra: Any
    ) -> List[Token]:
        """Generate probabilities for each token in the input."""
        raise NotImplementedError

    @staticmethod
    def filter_think_tags(text: str, think_tag: str = "think") -> str:
        """
        Remove <think> tags from the text.
        - If the text contains <think> and </think>, it removes everything between them and the tags themselves.
        - If the text contains only </think>, it removes content before the tag.
        """
        paired_pattern = re.compile(rf"<{think_tag}>.*?</{think_tag}>", re.DOTALL)
        filtered = paired_pattern.sub("", text)

        orphan_pattern = re.compile(rf"^.*?</{think_tag}>", re.DOTALL)
        filtered = orphan_pattern.sub("", filtered)

        filtered = filtered.strip()
        return filtered if filtered else text.strip()

    def shutdown(self) -> None:
        """Shutdown the LLM engine if applicable."""

    def restart(self) -> None:
        """Reinitialize the LLM engine if applicable."""