Spaces:
Running
Running
File size: 11,724 Bytes
acd7cf4 817f16e 3a3b216 acd7cf4 d2a63cc 43d27f2 d2a63cc acd7cf4 fb9c306 acd7cf4 3a3b216 acd7cf4 3a3b216 0b9d8c7 3a3b216 799ac7c acd7cf4 799ac7c acd7cf4 3a3b216 fb9c306 0b9d8c7 acd7cf4 fb9c306 acd7cf4 fb9c306 3a3b216 acd7cf4 817f16e fb9c306 817f16e fb9c306 817f16e fb9c306 3a3b216 fb9c306 acd7cf4 0b9d8c7 acd7cf4 fb9c306 acd7cf4 fb9c306 817f16e bda6eda acd7cf4 3a3b216 817f16e 3a3b216 e4316f1 acd7cf4 3a3b216 acd7cf4 0b9d8c7 3a3b216 acd7cf4 0b9d8c7 d2a63cc 0b9d8c7 3a3b216 0b9d8c7 d2a63cc 0b9d8c7 acd7cf4 0b9d8c7 acd7cf4 0b9d8c7 3a3b216 0b9d8c7 acd7cf4 0b9d8c7 acd7cf4 fb9c306 0b9d8c7 fb9c306 acd7cf4 3a3b216 817f16e fb9c306 817f16e fb9c306 817f16e fb9c306 817f16e fb9c306 3a3b216 fb9c306 3a3b216 817f16e fb9c306 acd7cf4 817f16e fb9c306 817f16e acd7cf4 3a3b216 817f16e 799ac7c 0b9d8c7 799ac7c fb9c306 799ac7c 2a0edfe fb9c306 799ac7c acd7cf4 3a3b216 acd7cf4 0b9d8c7 fb9c306 acd7cf4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 |
import asyncio
import os
import time
from dataclasses import dataclass
from typing import Dict, cast
import gradio as gr
from graphgen.bases.base_storage import StorageNameSpace
from graphgen.bases.datatypes import Chunk
from graphgen.models import (
JsonKVStorage,
JsonListStorage,
NetworkXStorage,
OpenAIClient,
Tokenizer,
)
from graphgen.operators import (
build_mm_kg,
build_text_kg,
chunk_documents,
generate_qas,
judge_statement,
partition_kg,
quiz,
read_files,
search_all,
)
from graphgen.utils import async_to_sync_method, compute_mm_hash, logger
sys_path = os.path.abspath(os.path.join(os.path.dirname(__file__), ".."))
@dataclass
class GraphGen:
unique_id: int = int(time.time())
working_dir: str = os.path.join(sys_path, "cache")
# llm
tokenizer_instance: Tokenizer = None
synthesizer_llm_client: OpenAIClient = None
trainee_llm_client: OpenAIClient = None
# webui
progress_bar: gr.Progress = None
def __post_init__(self):
self.tokenizer_instance: Tokenizer = self.tokenizer_instance or Tokenizer(
model_name=os.getenv("TOKENIZER_MODEL")
)
self.synthesizer_llm_client: OpenAIClient = (
self.synthesizer_llm_client
or OpenAIClient(
model_name=os.getenv("SYNTHESIZER_MODEL"),
api_key=os.getenv("SYNTHESIZER_API_KEY"),
base_url=os.getenv("SYNTHESIZER_BASE_URL"),
tokenizer=self.tokenizer_instance,
)
)
self.trainee_llm_client: OpenAIClient = self.trainee_llm_client or OpenAIClient(
model_name=os.getenv("TRAINEE_MODEL"),
api_key=os.getenv("TRAINEE_API_KEY"),
base_url=os.getenv("TRAINEE_BASE_URL"),
tokenizer=self.tokenizer_instance,
)
self.full_docs_storage: JsonKVStorage = JsonKVStorage(
self.working_dir, namespace="full_docs"
)
self.chunks_storage: JsonKVStorage = JsonKVStorage(
self.working_dir, namespace="chunks"
)
self.graph_storage: NetworkXStorage = NetworkXStorage(
self.working_dir, namespace="graph"
)
self.search_storage: JsonKVStorage = JsonKVStorage(
self.working_dir, namespace="search"
)
self.rephrase_storage: JsonKVStorage = JsonKVStorage(
self.working_dir, namespace="rephrase"
)
self.qa_storage: JsonListStorage = JsonListStorage(
os.path.join(self.working_dir, "data", "graphgen", f"{self.unique_id}"),
namespace="qa",
)
@async_to_sync_method
async def insert(self, read_config: Dict, split_config: Dict):
"""
insert chunks into the graph
"""
# Step 1: Read files
data = read_files(read_config["input_file"], self.working_dir)
if len(data) == 0:
logger.warning("No data to process")
return
assert isinstance(data, list) and isinstance(data[0], dict)
# TODO: configurable whether to use coreference resolution
new_docs = {compute_mm_hash(doc, prefix="doc-"): doc for doc in data}
_add_doc_keys = await self.full_docs_storage.filter_keys(list(new_docs.keys()))
new_docs = {k: v for k, v in new_docs.items() if k in _add_doc_keys}
new_text_docs = {k: v for k, v in new_docs.items() if v.get("type") == "text"}
new_mm_docs = {k: v for k, v in new_docs.items() if v.get("type") != "text"}
await self.full_docs_storage.upsert(new_docs)
async def _insert_text_docs(text_docs):
if len(text_docs) == 0:
logger.warning("All text docs are already in the storage")
return
logger.info("[New Docs] inserting %d text docs", len(text_docs))
# Step 2.1: Split chunks and filter existing ones
inserting_chunks = await chunk_documents(
text_docs,
split_config["chunk_size"],
split_config["chunk_overlap"],
self.tokenizer_instance,
self.progress_bar,
)
_add_chunk_keys = await self.chunks_storage.filter_keys(
list(inserting_chunks.keys())
)
inserting_chunks = {
k: v for k, v in inserting_chunks.items() if k in _add_chunk_keys
}
if len(inserting_chunks) == 0:
logger.warning("All text chunks are already in the storage")
return
logger.info("[New Chunks] inserting %d text chunks", len(inserting_chunks))
await self.chunks_storage.upsert(inserting_chunks)
# Step 2.2: Extract entities and relations from text chunks
logger.info("[Text Entity and Relation Extraction] processing ...")
_add_entities_and_relations = await build_text_kg(
llm_client=self.synthesizer_llm_client,
kg_instance=self.graph_storage,
chunks=[
Chunk(id=k, content=v["content"], type="text")
for k, v in inserting_chunks.items()
],
progress_bar=self.progress_bar,
)
if not _add_entities_and_relations:
logger.warning("No entities or relations extracted from text chunks")
return
await self._insert_done()
return _add_entities_and_relations
async def _insert_multi_modal_docs(mm_docs):
if len(mm_docs) == 0:
logger.warning("No multi-modal documents to insert")
return
logger.info("[New Docs] inserting %d multi-modal docs", len(mm_docs))
# Step 3.1: Transform multi-modal documents into chunks and filter existing ones
inserting_chunks = await chunk_documents(
mm_docs,
split_config["chunk_size"],
split_config["chunk_overlap"],
self.tokenizer_instance,
self.progress_bar,
)
_add_chunk_keys = await self.chunks_storage.filter_keys(
list(inserting_chunks.keys())
)
inserting_chunks = {
k: v for k, v in inserting_chunks.items() if k in _add_chunk_keys
}
if len(inserting_chunks) == 0:
logger.warning("All multi-modal chunks are already in the storage")
return
logger.info(
"[New Chunks] inserting %d multimodal chunks", len(inserting_chunks)
)
await self.chunks_storage.upsert(inserting_chunks)
# Step 3.2: Extract multi-modal entities and relations from chunks
logger.info("[Multi-modal Entity and Relation Extraction] processing ...")
_add_entities_and_relations = await build_mm_kg(
llm_client=self.synthesizer_llm_client,
kg_instance=self.graph_storage,
chunks=[Chunk.from_dict(k, v) for k, v in inserting_chunks.items()],
progress_bar=self.progress_bar,
)
if not _add_entities_and_relations:
logger.warning(
"No entities or relations extracted from multi-modal chunks"
)
return
await self._insert_done()
return _add_entities_and_relations
# Step 2: Insert text documents
await _insert_text_docs(new_text_docs)
# Step 3: Insert multi-modal documents
await _insert_multi_modal_docs(new_mm_docs)
async def _insert_done(self):
tasks = []
for storage_instance in [
self.full_docs_storage,
self.chunks_storage,
self.graph_storage,
self.search_storage,
]:
if storage_instance is None:
continue
tasks.append(cast(StorageNameSpace, storage_instance).index_done_callback())
await asyncio.gather(*tasks)
@async_to_sync_method
async def search(self, search_config: Dict):
logger.info(
"Search is %s", "enabled" if search_config["enabled"] else "disabled"
)
if search_config["enabled"]:
logger.info("[Search] %s ...", ", ".join(search_config["search_types"]))
all_nodes = await self.graph_storage.get_all_nodes()
all_nodes_names = [node[0] for node in all_nodes]
new_search_entities = await self.full_docs_storage.filter_keys(
all_nodes_names
)
logger.info(
"[Search] Found %d entities to search", len(new_search_entities)
)
_add_search_data = await search_all(
search_types=search_config["search_types"],
search_entities=new_search_entities,
)
if _add_search_data:
await self.search_storage.upsert(_add_search_data)
logger.info("[Search] %d entities searched", len(_add_search_data))
# Format search results for inserting
search_results = []
for _, search_data in _add_search_data.items():
search_results.extend(
[
{"content": search_data[key]}
for key in list(search_data.keys())
]
)
# TODO: fix insert after search
await self.insert()
@async_to_sync_method
async def quiz_and_judge(self, quiz_and_judge_config: Dict):
if quiz_and_judge_config is None or not quiz_and_judge_config.get(
"enabled", False
):
logger.warning("Quiz and Judge is not used in this pipeline.")
return
max_samples = quiz_and_judge_config["quiz_samples"]
await quiz(
self.synthesizer_llm_client,
self.graph_storage,
self.rephrase_storage,
max_samples,
)
# TODO: assert trainee_llm_client is valid before judge
re_judge = quiz_and_judge_config["re_judge"]
_update_relations = await judge_statement(
self.trainee_llm_client,
self.graph_storage,
self.rephrase_storage,
re_judge,
)
await self.rephrase_storage.index_done_callback()
await _update_relations.index_done_callback()
@async_to_sync_method
async def generate(self, partition_config: Dict, generate_config: Dict):
# Step 1: partition the graph
batches = await partition_kg(
self.graph_storage,
self.chunks_storage,
self.tokenizer_instance,
partition_config,
)
# Step 2: generate QA pairs
results = await generate_qas(
self.synthesizer_llm_client,
batches,
generate_config,
progress_bar=self.progress_bar,
)
if not results:
logger.warning("No QA pairs generated")
return
# Step 3: store the generated QA pairs
await self.qa_storage.upsert(results)
await self.qa_storage.index_done_callback()
@async_to_sync_method
async def clear(self):
await self.full_docs_storage.drop()
await self.chunks_storage.drop()
await self.search_storage.drop()
await self.graph_storage.clear()
await self.rephrase_storage.drop()
await self.qa_storage.drop()
logger.info("All caches are cleared")
|