File size: 2,574 Bytes
799ac7c
 
 
d02622b
799ac7c
 
 
 
 
 
 
d02622b
8c66169
799ac7c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
from abc import ABC, abstractmethod
from typing import Any

from graphgen.bases.base_llm_wrapper import BaseLLMWrapper


class BaseGenerator(ABC):
    """
    Generate QAs based on given prompts.
    """

    def __init__(self, llm_client: BaseLLMWrapper):
        self.llm_client = llm_client

    @staticmethod
    @abstractmethod
    def build_prompt(
        batch: tuple[list[tuple[str, dict]], list[tuple[Any, Any, dict]]]
    ) -> str:
        """Build prompt for LLM based on the given batch"""

    @staticmethod
    @abstractmethod
    def parse_response(response: str) -> Any:
        """Parse the LLM response and return the generated QAs"""

    async def generate(
        self,
        batch: tuple[
            list[tuple[str, dict]], list[tuple[Any, Any, dict] | tuple[Any, Any, Any]]
        ],
    ) -> dict[str, Any]:
        """
        Generate QAs based on a given batch.
        :param batch
        :return: QA pairs
        """
        result = {}
        prompt = self.build_prompt(batch)
        response = await self.llm_client.generate_answer(prompt)
        qa_pairs = self.parse_response(response)  # generate one or more QA pairs
        result.update(qa_pairs)
        return result

    @staticmethod
    def format_generation_results(
        results: list[dict], output_data_format: str
    ) -> list[dict[str, Any]]:
        if output_data_format == "Alpaca":
            results = [
                {
                    "instruction": v["question"],
                    "input": "",
                    "output": v["answer"],
                }
                for item in results
                for k, v in item.items()
            ]
        elif output_data_format == "Sharegpt":
            results = [
                {
                    "conversations": [
                        {"from": "human", "value": v["question"]},
                        {"from": "gpt", "value": v["answer"]},
                    ]
                }
                for item in results
                for k, v in item.items()
            ]
        elif output_data_format == "ChatML":
            results = [
                {
                    "messages": [
                        {"role": "user", "content": v["question"]},
                        {"role": "assistant", "content": v["answer"]},
                    ]
                }
                for item in results
                for k, v in item.items()
            ]
        else:
            raise ValueError(f"Unknown output data format: {output_data_format}")
        return results