GraphGen / graphgen /models /kg_builder /light_rag_kg_builder.py
github-actions[bot]
Auto-sync from demo at Tue Nov 25 11:19:13 UTC 2025
9e67c3b
raw
history blame
7.36 kB
import re
from collections import Counter, defaultdict
from typing import Dict, List, Tuple
from graphgen.bases import BaseGraphStorage, BaseKGBuilder, BaseLLMWrapper, Chunk
from graphgen.templates import KG_EXTRACTION_PROMPT, KG_SUMMARIZATION_PROMPT
from graphgen.utils import (
detect_main_language,
handle_single_entity_extraction,
handle_single_relationship_extraction,
logger,
pack_history_conversations,
split_string_by_multi_markers,
)
class LightRAGKGBuilder(BaseKGBuilder):
def __init__(self, llm_client: BaseLLMWrapper, max_loop: int = 3):
super().__init__(llm_client)
self.max_loop = max_loop
async def extract(
self, chunk: Chunk
) -> Tuple[Dict[str, List[dict]], Dict[Tuple[str, str], List[dict]]]:
"""
Extract entities and relationships from a single chunk using the LLM client.
:param chunk
:return: (nodes_data, edges_data)
"""
chunk_id = chunk.id
content = chunk.content
# step 1: language_detection
language = detect_main_language(content)
hint_prompt = KG_EXTRACTION_PROMPT[language]["TEMPLATE"].format(
**KG_EXTRACTION_PROMPT["FORMAT"], input_text=content
)
# step 2: initial glean
final_result = await self.llm_client.generate_answer(hint_prompt)
logger.debug("First extraction result: %s", final_result)
# step3: iterative refinement
history = pack_history_conversations(hint_prompt, final_result)
for loop_idx in range(self.max_loop):
if_loop_result = await self.llm_client.generate_answer(
text=KG_EXTRACTION_PROMPT[language]["IF_LOOP"], history=history
)
if_loop_result = if_loop_result.strip().strip('"').strip("'").lower()
if if_loop_result != "yes":
break
glean_result = await self.llm_client.generate_answer(
text=KG_EXTRACTION_PROMPT[language]["CONTINUE"], history=history
)
logger.debug("Loop %s glean: %s", loop_idx + 1, glean_result)
history += pack_history_conversations(
KG_EXTRACTION_PROMPT[language]["CONTINUE"], glean_result
)
final_result += glean_result
# step 4: parse the final result
records = split_string_by_multi_markers(
final_result,
[
KG_EXTRACTION_PROMPT["FORMAT"]["record_delimiter"],
KG_EXTRACTION_PROMPT["FORMAT"]["completion_delimiter"],
],
)
nodes = defaultdict(list)
edges = defaultdict(list)
for record in records:
match = re.search(r"\((.*)\)", record)
if not match:
continue
inner = match.group(1)
attributes = split_string_by_multi_markers(
inner, [KG_EXTRACTION_PROMPT["FORMAT"]["tuple_delimiter"]]
)
entity = await handle_single_entity_extraction(attributes, chunk_id)
if entity is not None:
nodes[entity["entity_name"]].append(entity)
continue
relation = await handle_single_relationship_extraction(attributes, chunk_id)
if relation is not None:
key = (relation["src_id"], relation["tgt_id"])
edges[key].append(relation)
return dict(nodes), dict(edges)
async def merge_nodes(
self,
node_data: tuple[str, List[dict]],
kg_instance: BaseGraphStorage,
) -> None:
entity_name, node_data = node_data
entity_types = []
source_ids = []
descriptions = []
node = kg_instance.get_node(entity_name)
if node is not None:
entity_types.append(node["entity_type"])
source_ids.extend(
split_string_by_multi_markers(node["source_id"], ["<SEP>"])
)
descriptions.append(node["description"])
# take the most frequent entity_type
entity_type = sorted(
Counter([dp["entity_type"] for dp in node_data] + entity_types).items(),
key=lambda x: x[1],
reverse=True,
)[0][0]
description = "<SEP>".join(
sorted(set([dp["description"] for dp in node_data] + descriptions))
)
description = await self._handle_kg_summary(entity_name, description)
source_id = "<SEP>".join(
set([dp["source_id"] for dp in node_data] + source_ids)
)
node_data = {
"entity_type": entity_type,
"description": description,
"source_id": source_id,
}
kg_instance.upsert_node(entity_name, node_data=node_data)
async def merge_edges(
self,
edges_data: tuple[Tuple[str, str], List[dict]],
kg_instance: BaseGraphStorage,
) -> None:
(src_id, tgt_id), edge_data = edges_data
source_ids = []
descriptions = []
edge = kg_instance.get_edge(src_id, tgt_id)
if edge is not None:
source_ids.extend(
split_string_by_multi_markers(edge["source_id"], ["<SEP>"])
)
descriptions.append(edge["description"])
description = "<SEP>".join(
sorted(set([dp["description"] for dp in edge_data] + descriptions))
)
source_id = "<SEP>".join(
set([dp["source_id"] for dp in edge_data] + source_ids)
)
for insert_id in [src_id, tgt_id]:
if not kg_instance.has_node(insert_id):
kg_instance.upsert_node(
insert_id,
node_data={
"source_id": source_id,
"description": description,
"entity_type": "UNKNOWN",
},
)
description = await self._handle_kg_summary(
f"({src_id}, {tgt_id})", description
)
kg_instance.upsert_edge(
src_id,
tgt_id,
edge_data={"source_id": source_id, "description": description},
)
async def _handle_kg_summary(
self,
entity_or_relation_name: str,
description: str,
max_summary_tokens: int = 200,
) -> str:
"""
Handle knowledge graph summary
:param entity_or_relation_name
:param description
:param max_summary_tokens
:return summary
"""
tokenizer_instance = self.llm_client.tokenizer
language = detect_main_language(description)
tokens = tokenizer_instance.encode(description)
if len(tokens) < max_summary_tokens:
return description
use_description = tokenizer_instance.decode(tokens[:max_summary_tokens])
prompt = KG_SUMMARIZATION_PROMPT[language]["TEMPLATE"].format(
entity_name=entity_or_relation_name,
description_list=use_description.split("<SEP>"),
**KG_SUMMARIZATION_PROMPT["FORMAT"],
)
new_description = await self.llm_client.generate_answer(prompt)
logger.info(
"Entity or relation %s summary: %s",
entity_or_relation_name,
new_description,
)
return new_description