GraphGen / graphgen /graphgen.py
github-actions[bot]
Auto-sync from demo at Wed Nov 26 03:20:24 UTC 2025
f29e862
raw
history blame
10.9 kB
import os
import time
from typing import Dict
import gradio as gr
from graphgen.bases import BaseLLMWrapper
from graphgen.bases.datatypes import Chunk
from graphgen.engine import op
from graphgen.models import (
JsonKVStorage,
JsonListStorage,
MetaJsonKVStorage,
NetworkXStorage,
OpenAIClient,
Tokenizer,
)
from graphgen.operators import (
build_kg,
chunk_documents,
extract_info,
generate_qas,
init_llm,
judge_statement,
partition_kg,
quiz,
read_files,
search_all,
)
from graphgen.utils import async_to_sync_method, compute_mm_hash, logger
sys_path = os.path.abspath(os.path.join(os.path.dirname(__file__), ".."))
class GraphGen:
def __init__(
self,
unique_id: int = int(time.time()),
working_dir: str = os.path.join(sys_path, "cache"),
tokenizer_instance: Tokenizer = None,
synthesizer_llm_client: OpenAIClient = None,
trainee_llm_client: OpenAIClient = None,
progress_bar: gr.Progress = None,
):
self.unique_id: int = unique_id
self.working_dir: str = working_dir
# llm
self.tokenizer_instance: Tokenizer = tokenizer_instance or Tokenizer(
model_name=os.getenv("TOKENIZER_MODEL")
)
self.synthesizer_llm_client: BaseLLMWrapper = (
synthesizer_llm_client or init_llm("synthesizer")
)
self.trainee_llm_client: BaseLLMWrapper = trainee_llm_client
self.meta_storage: MetaJsonKVStorage = MetaJsonKVStorage(
self.working_dir, namespace="_meta"
)
self.full_docs_storage: JsonKVStorage = JsonKVStorage(
self.working_dir, namespace="full_docs"
)
self.chunks_storage: JsonKVStorage = JsonKVStorage(
self.working_dir, namespace="chunks"
)
self.graph_storage: NetworkXStorage = NetworkXStorage(
self.working_dir, namespace="graph"
)
self.rephrase_storage: JsonKVStorage = JsonKVStorage(
self.working_dir, namespace="rephrase"
)
self.partition_storage: JsonListStorage = JsonListStorage(
self.working_dir, namespace="partition"
)
self.search_storage: JsonKVStorage = JsonKVStorage(
os.path.join(self.working_dir, "data", "graphgen", f"{self.unique_id}"),
namespace="search",
)
self.qa_storage: JsonListStorage = JsonListStorage(
os.path.join(self.working_dir, "data", "graphgen", f"{self.unique_id}"),
namespace="qa",
)
self.extract_storage: JsonKVStorage = JsonKVStorage(
os.path.join(self.working_dir, "data", "graphgen", f"{self.unique_id}"),
namespace="extraction",
)
# webui
self.progress_bar: gr.Progress = progress_bar
@op("read", deps=[])
@async_to_sync_method
async def read(self, read_config: Dict):
"""
read files from input sources
"""
doc_stream = read_files(**read_config, cache_dir=self.working_dir)
batch = {}
for doc in doc_stream:
doc_id = compute_mm_hash(doc, prefix="doc-")
batch[doc_id] = doc
if batch:
self.full_docs_storage.upsert(batch)
self.full_docs_storage.index_done_callback()
# TODO: configurable whether to use coreference resolution
_add_doc_keys = self.full_docs_storage.filter_keys(list(batch.keys()))
new_docs = {k: v for k, v in batch.items() if k in _add_doc_keys}
if len(new_docs) == 0:
logger.warning("All documents are already in the storage")
return
self.full_docs_storage.upsert(new_docs)
self.full_docs_storage.index_done_callback()
@op("chunk", deps=["read"])
@async_to_sync_method
async def chunk(self, chunk_config: Dict):
"""
chunk documents into smaller pieces from full_docs_storage if not already present
"""
new_docs = self.meta_storage.get_new_data(self.full_docs_storage)
if len(new_docs) == 0:
logger.warning("All documents are already in the storage")
return
inserting_chunks = await chunk_documents(
new_docs,
self.tokenizer_instance,
self.progress_bar,
**chunk_config,
)
_add_chunk_keys = self.chunks_storage.filter_keys(list(inserting_chunks.keys()))
inserting_chunks = {
k: v for k, v in inserting_chunks.items() if k in _add_chunk_keys
}
if len(inserting_chunks) == 0:
logger.warning("All chunks are already in the storage")
return
self.chunks_storage.upsert(inserting_chunks)
self.chunks_storage.index_done_callback()
self.meta_storage.mark_done(self.full_docs_storage)
self.meta_storage.index_done_callback()
@op("build_kg", deps=["chunk"])
@async_to_sync_method
async def build_kg(self):
"""
build knowledge graph from text chunks
"""
# Step 1: get new chunks according to meta and chunks storage
inserting_chunks = self.meta_storage.get_new_data(self.chunks_storage)
if len(inserting_chunks) == 0:
logger.warning("All chunks are already in the storage")
return
logger.info("[New Chunks] inserting %d chunks", len(inserting_chunks))
# Step 2: build knowledge graph from new chunks
_add_entities_and_relations = await build_kg(
llm_client=self.synthesizer_llm_client,
kg_instance=self.graph_storage,
chunks=[Chunk.from_dict(k, v) for k, v in inserting_chunks.items()],
progress_bar=self.progress_bar,
)
if not _add_entities_and_relations:
logger.warning("No entities or relations extracted from text chunks")
return
# Step 3: mark meta
self.graph_storage.index_done_callback()
self.meta_storage.mark_done(self.chunks_storage)
self.meta_storage.index_done_callback()
return _add_entities_and_relations
@op("search", deps=["read"])
@async_to_sync_method
async def search(self, search_config: Dict):
logger.info("[Search] %s ...", ", ".join(search_config["data_sources"]))
seeds = self.meta_storage.get_new_data(self.full_docs_storage)
if len(seeds) == 0:
logger.warning("All documents are already been searched")
return
search_results = await search_all(
seed_data=seeds,
search_config=search_config,
)
_add_search_keys = self.search_storage.filter_keys(list(search_results.keys()))
search_results = {
k: v for k, v in search_results.items() if k in _add_search_keys
}
if len(search_results) == 0:
logger.warning("All search results are already in the storage")
return
self.search_storage.upsert(search_results)
self.search_storage.index_done_callback()
self.meta_storage.mark_done(self.full_docs_storage)
self.meta_storage.index_done_callback()
@op("quiz_and_judge", deps=["build_kg"])
@async_to_sync_method
async def quiz_and_judge(self, quiz_and_judge_config: Dict):
logger.warning(
"Quiz and Judge operation needs trainee LLM client."
" Make sure to provide one."
)
max_samples = quiz_and_judge_config["quiz_samples"]
await quiz(
self.synthesizer_llm_client,
self.graph_storage,
self.rephrase_storage,
max_samples,
progress_bar=self.progress_bar,
)
# TODO: assert trainee_llm_client is valid before judge
if not self.trainee_llm_client:
# TODO: shutdown existing synthesizer_llm_client properly
logger.info("No trainee LLM client provided, initializing a new one.")
self.synthesizer_llm_client.shutdown()
self.trainee_llm_client = init_llm("trainee")
re_judge = quiz_and_judge_config["re_judge"]
_update_relations = await judge_statement(
self.trainee_llm_client,
self.graph_storage,
self.rephrase_storage,
re_judge,
progress_bar=self.progress_bar,
)
self.rephrase_storage.index_done_callback()
_update_relations.index_done_callback()
logger.info("Shutting down trainee LLM client.")
self.trainee_llm_client.shutdown()
self.trainee_llm_client = None
logger.info("Restarting synthesizer LLM client.")
self.synthesizer_llm_client.restart()
@op("partition", deps=["build_kg"])
@async_to_sync_method
async def partition(self, partition_config: Dict):
batches = await partition_kg(
self.graph_storage,
self.chunks_storage,
self.tokenizer_instance,
partition_config,
)
self.partition_storage.upsert(batches)
return batches
@op("extract", deps=["chunk"])
@async_to_sync_method
async def extract(self, extract_config: Dict):
logger.info("Extracting information from given chunks...")
results = await extract_info(
self.synthesizer_llm_client,
self.chunks_storage,
extract_config,
progress_bar=self.progress_bar,
)
if not results:
logger.warning("No information extracted")
return
self.extract_storage.upsert(results)
self.extract_storage.index_done_callback()
self.meta_storage.mark_done(self.chunks_storage)
self.meta_storage.index_done_callback()
@op("generate", deps=["partition"])
@async_to_sync_method
async def generate(self, generate_config: Dict):
batches = self.partition_storage.data
if not batches:
logger.warning("No partitions found for QA generation")
return
# Step 2: generate QA pairs
results = await generate_qas(
self.synthesizer_llm_client,
batches,
generate_config,
progress_bar=self.progress_bar,
)
if not results:
logger.warning("No QA pairs generated")
return
# Step 3: store the generated QA pairs
self.qa_storage.upsert(results)
self.qa_storage.index_done_callback()
@async_to_sync_method
async def clear(self):
self.full_docs_storage.drop()
self.chunks_storage.drop()
self.search_storage.drop()
self.graph_storage.clear()
self.rephrase_storage.drop()
self.qa_storage.drop()
logger.info("All caches are cleared")
# TODO: add data filtering step here in the future
# graph_gen.filter(filter_config=config["filter"])