Spaces:
Running
Running
| COT_GENERATION_ZH = """根据给定的知识图谱原始信息及已生成的推理路径,产出一条符合模板要求、可直接用于下游训练或推理的 CoT 数据。\ | |
| CoT(Chain-of-Thought,思维链)指在回答复杂问题时,把中间推理步骤一步一步显式写出来,使推理过程透明、可追溯,而不是直接给出最终答案。 | |
| -输入格式- | |
| [Entities:] | |
| (实体名:实体描述) | |
| ... | |
| [Relationships:] | |
| (来源实体)-[关系描述]->(目标实体) | |
| ... | |
| [Question and Reasoning Path:] | |
| (问题) | |
| (推理路径) | |
| -输出要求- | |
| 1. 每一步只完成一个不可分割的子任务,并用自然语言衔接,但是要避免生硬的连接词。 | |
| 2. 使用中文。 | |
| 3. 不要使用有序列表或编号。 | |
| 4. 请直接给出答案,不要生成无关信息。 | |
| -真实数据- | |
| 输入: | |
| [Entities:]: | |
| {entities} | |
| [Relationships:]: | |
| {relationships} | |
| [Question:]: | |
| {question} | |
| [Reasoning_Template:]: | |
| {reasoning_template} | |
| 输出: | |
| """ | |
| COT_GENERATION_EN = """Given the raw knowledge graph information and the provided reasoning-path, \ | |
| produce one Chain-of-Thought (CoT) sample that strictly follows the template \ | |
| and can be directly used for downstream training or inference. | |
| CoT (Chain-of-Thought) means that when answering a complex question, the intermediate reasoning steps are \ | |
| explicitly written out one by one, making the reasoning process transparent and traceable instead of giving \ | |
| only the final answer. | |
| -Input Format- | |
| [Entities:]: | |
| (ENTITY_NAME: ENTITY_DESCRIPTION) | |
| ... | |
| [Relationships:]: | |
| (ENTITY_SOURCE)-[RELATIONSHIP_DESCRIPTION]->(ENTITY_TARGET) | |
| ... | |
| [Question and Reasoning Path:]: | |
| (QUESTION) | |
| (REASONING_PATH) | |
| -Output Requirements- | |
| 1. Each step completes a single, indivisible sub-task and is naturally connected, avoiding abrupt transition words. | |
| 2. Use English. | |
| 3. Do not use ordered lists or numbering. | |
| 4. Do not generate extraneous information, just provide the answer. | |
| -Real Data- | |
| Input: | |
| [Entities:]: | |
| {entities} | |
| [Relationships:]: | |
| {relationships} | |
| [Question:]: | |
| {question} | |
| [Reasoning_Template:]: | |
| {reasoning_template} | |
| Output: | |
| """ | |
| COT_TEMPLATE_DESIGN_ZH = """你是一位“元推理架构师”。你的任务不是回答问题,\ | |
| 而是根据给定的知识图谱中的实体和关系的名称以及描述信息,设计一条可复用、可泛化的 CoT 推理路径模板。\ | |
| -步骤- | |
| 1. 实体识别 | |
| - 准确地识别[Entities:]章节中的实体信息,包括实体名、实体描述信息。 | |
| - 实体信息的一般格式为: | |
| (实体名:实体描述) | |
| 2. 关系识别 | |
| - 准确地识别[Relationships:]章节中的关系信息,包括来源实体名、目标实体名、关系描述信息。 | |
| - 关系信息的一般格式为: | |
| (来源实体名)-[关系描述]->(目标实体名) | |
| 3. 图结构理解 | |
| - 正确地将关系信息中的来源实体名与实体信息关联。 | |
| - 根据提供的关系信息还原出图结构。 | |
| 4. 问题设计 | |
| - 围绕知识图谱所表达的“核心主题”设计一个问题。 | |
| - 问题必须能在图谱内部通过实体、关系或属性直接验证;避免主观判断。 | |
| - 问题应该能够模型足够的思考,充分利用图谱中的实体和关系,避免过于简单或无关的问题。 | |
| 5. 推理路径生成 | |
| - 根据问题设计一个**可被后续模型直接执行的推理蓝图**。 | |
| - 保持步骤最小化:每一步只解决一个“不可分割”的子问题。 | |
| -约束条件- | |
| 1. 不要在回答中描述你的思考过程,直接给出回复,只给出问题和推理路径设计,不要生成无关信息。 | |
| 2. 如果提供的描述信息相互矛盾,请解决矛盾并提供一个单一、连贯的逻辑。 | |
| 3. 避免使用停用词和过于常见的词汇。 | |
| 4. 不要出现具体数值或结论,不要出现“识别实体”、“识别关系”这类无意义的操作描述。 | |
| 5. 使用中文作为输出语言。 | |
| 6. 输出格式为: | |
| 问题: | |
| 推理路径设计: | |
| -真实数据- | |
| 输入: | |
| [Entities:]: | |
| {entities} | |
| [Relationships:]: | |
| {relationships} | |
| 输出: | |
| """ | |
| COT_TEMPLATE_DESIGN_EN = """You are a “meta-reasoning architect”. \ | |
| Your task is NOT to answer the question, but to design a reusable, generalizable CoT reasoning-path \ | |
| template based solely on the names and descriptions of entities and \ | |
| relationships in the provided knowledge graph. | |
| - Steps - | |
| 1. Entity Recognition | |
| - Accurately recognize entity information in the [Entities:] section, including entity names and descriptions. | |
| - The general formats for entity information are: | |
| (ENTITY_NAME: ENTITY_DESCRIPTION) | |
| 2. Relationship Recognition | |
| - Accurately recognize relationship information in the [Relationships:] section, including source_entity_name, target_entity_name, and relationship descriptions. | |
| - The general formats for relationship information are: | |
| (SOURCE_ENTITY_NAME)-[RELATIONSHIP_DESCRIPTION]->(TARGET_ENTITY_NAME) | |
| 3. Graph Structure Understanding | |
| - Correctly associate the source entity name in the relationship information with the entity information. | |
| - Reconstruct the graph structure based on the provided relationship information. | |
| 4. Question Design | |
| - Design a question around the "core theme" expressed by the knowledge graph. | |
| - The question must be verifiable directly within the graph through entities, relationships, or attributes; avoid subjective judgments. | |
| - The question should allow the model to think sufficiently, fully utilizing the entities and relationships in the graph, avoiding overly simple or irrelevant questions. | |
| 5. Reasoning-Path Design | |
| - Output a **blueprint that any later model can directly execute**. | |
| - Keep steps minimal: each step solves one indivisible sub-problem. | |
| - Constraints - | |
| 1. Do NOT describe your thinking; output only the reasoning-path design. | |
| 2. If the provided descriptions are contradictory, resolve conflicts and provide a single coherent logic. | |
| 3. Avoid using stop words and overly common words. | |
| 4. Do not include specific numerical values or conclusions, \ | |
| and DO NOT describing meaningless operations like "Identify the entity" or "Identify the relationship". | |
| 5. Use English as the output language. | |
| 6. The output format is: | |
| Question: | |
| Reasoning-Path Design: | |
| Please summarize the information expressed by the knowledge graph based on the following [Entities:] and [Relationships:] provided. | |
| - Real Data - | |
| Input: | |
| [Entities:]: | |
| {entities} | |
| [Relationships:]: | |
| {relationships} | |
| Output: | |
| """ | |
| COT_GENERATION_PROMPT = { | |
| "en": { | |
| "COT_GENERATION": COT_GENERATION_EN, | |
| "COT_TEMPLATE_DESIGN": COT_TEMPLATE_DESIGN_EN, | |
| }, | |
| "zh": { | |
| "COT_GENERATION": COT_GENERATION_ZH, | |
| "COT_TEMPLATE_DESIGN": COT_TEMPLATE_DESIGN_ZH, | |
| }, | |
| } | |