from typing import List import gradio as gr from graphgen.bases import BaseLLMWrapper from graphgen.bases.base_storage import BaseGraphStorage from graphgen.bases.datatypes import Chunk from graphgen.utils import logger from .build_mm_kg import build_mm_kg from .build_text_kg import build_text_kg async def build_kg( llm_client: BaseLLMWrapper, kg_instance: BaseGraphStorage, chunks: List[Chunk], progress_bar: gr.Progress = None, ): """ Build knowledge graph (KG) and merge into kg_instance :param llm_client: Synthesizer LLM model to extract entities and relationships :param kg_instance :param chunks :param anchor_type: get this type of information from chunks :param progress_bar: Gradio progress bar to show the progress of the extraction :return: """ text_chunks = [chunk for chunk in chunks if chunk.type == "text"] mm_chunks = [ chunk for chunk in chunks if chunk.type in ("image", "video", "table", "formula") ] if len(text_chunks) == 0: logger.info("All text chunks are already in the storage") else: logger.info("[Text Entity and Relation Extraction] processing ...") await build_text_kg( llm_client=llm_client, kg_instance=kg_instance, chunks=text_chunks, progress_bar=progress_bar, ) if len(mm_chunks) == 0: logger.info("All multi-modal chunks are already in the storage") else: logger.info("[Multi-modal Entity and Relation Extraction] processing ...") await build_mm_kg( llm_client=llm_client, kg_instance=kg_instance, chunks=mm_chunks, progress_bar=progress_bar, ) return kg_instance