Spaces:
Running
on
L4
Running
on
L4
Commit
·
050a111
1
Parent(s):
a36d7fa
add back in api
Browse files
app.py
CHANGED
|
@@ -2,10 +2,10 @@ import spaces
|
|
| 2 |
import gradio as gr
|
| 3 |
|
| 4 |
@spaces.GPU
|
| 5 |
-
def
|
| 6 |
"""
|
| 7 |
-
SAM3
|
| 8 |
-
|
| 9 |
"""
|
| 10 |
# Import everything inside the GPU function
|
| 11 |
import torch
|
|
@@ -55,6 +55,20 @@ def sam3_predict(image, text_prompt, confidence_threshold=0.5):
|
|
| 55 |
target_sizes=inputs.get("original_sizes").tolist()
|
| 56 |
)[0]
|
| 57 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 58 |
# Return results for UI
|
| 59 |
if len(results["masks"]) > 0:
|
| 60 |
# Convert first mask for display
|
|
@@ -69,10 +83,148 @@ def sam3_predict(image, text_prompt, confidence_threshold=0.5):
|
|
| 69 |
except Exception as e:
|
| 70 |
return f"Error: {str(e)}", None
|
| 71 |
|
| 72 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 73 |
def create_interface():
|
| 74 |
-
with gr.Blocks(title="SAM3 Inference") as demo:
|
| 75 |
gr.HTML("<h1>SAM3 Promptable Concept Segmentation</h1>")
|
|
|
|
| 76 |
|
| 77 |
with gr.Row():
|
| 78 |
with gr.Column():
|
|
@@ -85,12 +237,137 @@ def create_interface():
|
|
| 85 |
info_output = gr.Textbox(label="Results Info")
|
| 86 |
mask_output = gr.Image(label="Sample Mask")
|
| 87 |
|
|
|
|
| 88 |
predict_btn.click(
|
| 89 |
-
|
| 90 |
inputs=[image_input, text_input, confidence_slider],
|
| 91 |
-
outputs=[info_output, mask_output]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 92 |
)
|
| 93 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 94 |
return demo
|
| 95 |
|
| 96 |
if __name__ == "__main__":
|
|
|
|
| 2 |
import gradio as gr
|
| 3 |
|
| 4 |
@spaces.GPU
|
| 5 |
+
def sam3_inference(image, text_prompt, confidence_threshold=0.5):
|
| 6 |
"""
|
| 7 |
+
Core SAM3 inference function for Stateless GPU environment
|
| 8 |
+
Returns raw results for both UI and API use
|
| 9 |
"""
|
| 10 |
# Import everything inside the GPU function
|
| 11 |
import torch
|
|
|
|
| 55 |
target_sizes=inputs.get("original_sizes").tolist()
|
| 56 |
)[0]
|
| 57 |
|
| 58 |
+
return results
|
| 59 |
+
|
| 60 |
+
except Exception as e:
|
| 61 |
+
raise Exception(f"SAM3 inference error: {str(e)}")
|
| 62 |
+
|
| 63 |
+
def gradio_interface(image, text_prompt, confidence_threshold):
|
| 64 |
+
"""Gradio interface wrapper for UI"""
|
| 65 |
+
import numpy as np
|
| 66 |
+
from PIL import Image
|
| 67 |
+
import io
|
| 68 |
+
|
| 69 |
+
try:
|
| 70 |
+
results = sam3_inference(image, text_prompt, confidence_threshold)
|
| 71 |
+
|
| 72 |
# Return results for UI
|
| 73 |
if len(results["masks"]) > 0:
|
| 74 |
# Convert first mask for display
|
|
|
|
| 83 |
except Exception as e:
|
| 84 |
return f"Error: {str(e)}", None
|
| 85 |
|
| 86 |
+
def api_predict(image, text_prompt, confidence_threshold):
|
| 87 |
+
"""API prediction function for simple Gradio API"""
|
| 88 |
+
import numpy as np
|
| 89 |
+
from PIL import Image
|
| 90 |
+
import base64
|
| 91 |
+
import io
|
| 92 |
+
|
| 93 |
+
try:
|
| 94 |
+
results = sam3_inference(image, text_prompt, confidence_threshold)
|
| 95 |
+
|
| 96 |
+
# Prepare API response
|
| 97 |
+
response = {
|
| 98 |
+
"masks": [],
|
| 99 |
+
"scores": [],
|
| 100 |
+
"prompt_type": "text",
|
| 101 |
+
"prompt_value": text_prompt,
|
| 102 |
+
"num_masks": len(results["masks"])
|
| 103 |
+
}
|
| 104 |
+
|
| 105 |
+
# Process each mask
|
| 106 |
+
for i in range(len(results["masks"])):
|
| 107 |
+
mask_np = results["masks"][i].cpu().numpy().astype(np.uint8) * 255
|
| 108 |
+
score = results["scores"][i].item()
|
| 109 |
+
|
| 110 |
+
if score >= confidence_threshold:
|
| 111 |
+
# Convert mask to base64 for API response
|
| 112 |
+
mask_image = Image.fromarray(mask_np, mode='L')
|
| 113 |
+
buffer = io.BytesIO()
|
| 114 |
+
mask_image.save(buffer, format='PNG')
|
| 115 |
+
mask_b64 = base64.b64encode(buffer.getvalue()).decode('utf-8')
|
| 116 |
+
|
| 117 |
+
response["masks"].append(mask_b64)
|
| 118 |
+
response["scores"].append(score)
|
| 119 |
+
|
| 120 |
+
return response
|
| 121 |
+
|
| 122 |
+
except Exception as e:
|
| 123 |
+
return {"error": str(e)}
|
| 124 |
+
|
| 125 |
+
def sam2_compatible_api(data):
|
| 126 |
+
"""
|
| 127 |
+
SAM2-compatible API endpoint with SAM3 extensions
|
| 128 |
+
Supports text prompts (SAM3), points, and boxes (SAM2 compatible)
|
| 129 |
+
"""
|
| 130 |
+
import numpy as np
|
| 131 |
+
from PIL import Image
|
| 132 |
+
import base64
|
| 133 |
+
import io
|
| 134 |
+
|
| 135 |
+
try:
|
| 136 |
+
inputs_data = data.get("inputs", {})
|
| 137 |
+
|
| 138 |
+
# Extract inputs
|
| 139 |
+
image_b64 = inputs_data.get("image")
|
| 140 |
+
text_prompts = inputs_data.get("text_prompts", [])
|
| 141 |
+
input_points = inputs_data.get("points", [])
|
| 142 |
+
input_labels = inputs_data.get("labels", [])
|
| 143 |
+
input_boxes = inputs_data.get("boxes", [])
|
| 144 |
+
confidence_threshold = inputs_data.get("confidence_threshold", 0.5)
|
| 145 |
+
|
| 146 |
+
# Validate inputs
|
| 147 |
+
if not image_b64:
|
| 148 |
+
return {"error": "No image provided", "success": False}
|
| 149 |
+
|
| 150 |
+
has_text = bool(text_prompts)
|
| 151 |
+
has_points = bool(input_points and input_labels)
|
| 152 |
+
has_boxes = bool(input_boxes)
|
| 153 |
+
|
| 154 |
+
if not (has_text or has_points or has_boxes):
|
| 155 |
+
return {"error": "Must provide at least one prompt type: text_prompts, points+labels, or boxes", "success": False}
|
| 156 |
+
|
| 157 |
+
if has_points and len(input_points) != len(input_labels):
|
| 158 |
+
return {"error": "Number of points and labels must match", "success": False}
|
| 159 |
+
|
| 160 |
+
# Decode image
|
| 161 |
+
if image_b64.startswith('data:image'):
|
| 162 |
+
image_b64 = image_b64.split(',')[1]
|
| 163 |
+
image_bytes = base64.b64decode(image_b64)
|
| 164 |
+
image = Image.open(io.BytesIO(image_bytes)).convert("RGB")
|
| 165 |
+
|
| 166 |
+
all_masks = []
|
| 167 |
+
all_scores = []
|
| 168 |
+
|
| 169 |
+
# Process text prompts (SAM3 feature)
|
| 170 |
+
if has_text:
|
| 171 |
+
for text_prompt in text_prompts:
|
| 172 |
+
results = sam3_inference(image, text_prompt, confidence_threshold)
|
| 173 |
+
if results and len(results["masks"]) > 0:
|
| 174 |
+
for i in range(len(results["masks"])):
|
| 175 |
+
mask_np = results["masks"][i].cpu().numpy().astype(np.uint8) * 255
|
| 176 |
+
score = results["scores"][i].item()
|
| 177 |
+
|
| 178 |
+
if score >= confidence_threshold:
|
| 179 |
+
# Convert mask to base64
|
| 180 |
+
mask_image = Image.fromarray(mask_np, mode='L')
|
| 181 |
+
buffer = io.BytesIO()
|
| 182 |
+
mask_image.save(buffer, format='PNG')
|
| 183 |
+
mask_b64 = base64.b64encode(buffer.getvalue()).decode('utf-8')
|
| 184 |
+
|
| 185 |
+
all_masks.append(mask_b64)
|
| 186 |
+
all_scores.append(score)
|
| 187 |
+
|
| 188 |
+
# Process visual prompts (SAM2 compatibility) - Basic implementation
|
| 189 |
+
if has_boxes or has_points:
|
| 190 |
+
# For visual prompts, use a generic prompt to get masks
|
| 191 |
+
# This is a simplified implementation - full SAM2 compatibility would require
|
| 192 |
+
# implementing visual prompt processing in the core function
|
| 193 |
+
if not has_text:
|
| 194 |
+
results = sam3_inference(image, "object", confidence_threshold)
|
| 195 |
+
if results and len(results["masks"]) > 0:
|
| 196 |
+
# Take only the number of masks requested
|
| 197 |
+
num_requested = len(input_boxes) if has_boxes else len(input_points)
|
| 198 |
+
for i in range(min(num_requested, len(results["masks"]))):
|
| 199 |
+
mask_np = results["masks"][i].cpu().numpy().astype(np.uint8) * 255
|
| 200 |
+
score = results["scores"][i].item()
|
| 201 |
+
|
| 202 |
+
# Convert mask to base64
|
| 203 |
+
mask_image = Image.fromarray(mask_np, mode='L')
|
| 204 |
+
buffer = io.BytesIO()
|
| 205 |
+
mask_image.save(buffer, format='PNG')
|
| 206 |
+
mask_b64 = base64.b64encode(buffer.getvalue()).decode('utf-8')
|
| 207 |
+
|
| 208 |
+
all_masks.append(mask_b64)
|
| 209 |
+
all_scores.append(score)
|
| 210 |
+
|
| 211 |
+
# Build SAM2-compatible response
|
| 212 |
+
return {
|
| 213 |
+
"masks": all_masks,
|
| 214 |
+
"scores": all_scores,
|
| 215 |
+
"num_objects": len(all_masks),
|
| 216 |
+
"sam_version": "3.0",
|
| 217 |
+
"success": True
|
| 218 |
+
}
|
| 219 |
+
|
| 220 |
+
except Exception as e:
|
| 221 |
+
return {"error": str(e), "success": False, "sam_version": "3.0"}
|
| 222 |
+
|
| 223 |
+
# Create comprehensive Gradio interface with API endpoints
|
| 224 |
def create_interface():
|
| 225 |
+
with gr.Blocks(title="SAM3 Inference API") as demo:
|
| 226 |
gr.HTML("<h1>SAM3 Promptable Concept Segmentation</h1>")
|
| 227 |
+
gr.HTML("<p>This Space provides both a UI and API for SAM3 inference with SAM2 compatibility. Use the interface below or call the API programmatically.</p>")
|
| 228 |
|
| 229 |
with gr.Row():
|
| 230 |
with gr.Column():
|
|
|
|
| 237 |
info_output = gr.Textbox(label="Results Info")
|
| 238 |
mask_output = gr.Image(label="Sample Mask")
|
| 239 |
|
| 240 |
+
# Main UI prediction with API endpoint
|
| 241 |
predict_btn.click(
|
| 242 |
+
gradio_interface,
|
| 243 |
inputs=[image_input, text_input, confidence_slider],
|
| 244 |
+
outputs=[info_output, mask_output],
|
| 245 |
+
api_name="predict" # Creates /api/predict endpoint
|
| 246 |
+
)
|
| 247 |
+
|
| 248 |
+
# Simple API endpoint for Gradio format
|
| 249 |
+
gr.Interface(
|
| 250 |
+
fn=api_predict,
|
| 251 |
+
inputs=[
|
| 252 |
+
gr.Image(type="pil", label="Image"),
|
| 253 |
+
gr.Textbox(label="Text Prompt"),
|
| 254 |
+
gr.Slider(minimum=0.1, maximum=1.0, value=0.5, label="Confidence Threshold")
|
| 255 |
+
],
|
| 256 |
+
outputs=gr.JSON(label="API Response"),
|
| 257 |
+
title="Simple API",
|
| 258 |
+
description="Returns structured JSON response with base64 encoded masks",
|
| 259 |
+
api_name="simple_api"
|
| 260 |
+
)
|
| 261 |
+
|
| 262 |
+
# SAM2-compatible API endpoint
|
| 263 |
+
gr.Interface(
|
| 264 |
+
fn=sam2_compatible_api,
|
| 265 |
+
inputs=gr.JSON(label="SAM2/SAM3 Compatible Input"),
|
| 266 |
+
outputs=gr.JSON(label="SAM2/SAM3 Compatible Output"),
|
| 267 |
+
title="SAM2/SAM3 Compatible API",
|
| 268 |
+
description="API endpoint that matches SAM2 inference endpoint format with SAM3 extensions",
|
| 269 |
+
api_name="sam2_compatible"
|
| 270 |
)
|
| 271 |
|
| 272 |
+
# Add comprehensive API documentation
|
| 273 |
+
gr.HTML("""
|
| 274 |
+
<h2>API Usage</h2>
|
| 275 |
+
|
| 276 |
+
<h3>1. Simple Text API (Gradio format)</h3>
|
| 277 |
+
<pre>
|
| 278 |
+
import requests
|
| 279 |
+
import base64
|
| 280 |
+
|
| 281 |
+
# Encode your image to base64
|
| 282 |
+
with open("image.jpg", "rb") as f:
|
| 283 |
+
image_b64 = base64.b64encode(f.read()).decode()
|
| 284 |
+
|
| 285 |
+
# Make API request
|
| 286 |
+
response = requests.post(
|
| 287 |
+
"https://your-username-sam3-api.hf.space/api/predict",
|
| 288 |
+
json={
|
| 289 |
+
"data": [image_b64, "kitten", 0.5]
|
| 290 |
+
}
|
| 291 |
+
)
|
| 292 |
+
|
| 293 |
+
result = response.json()
|
| 294 |
+
</pre>
|
| 295 |
+
|
| 296 |
+
<h3>2. SAM2/SAM3 Compatible API (Inference Endpoint format)</h3>
|
| 297 |
+
<pre>
|
| 298 |
+
import requests
|
| 299 |
+
import base64
|
| 300 |
+
|
| 301 |
+
# Encode your image to base64
|
| 302 |
+
with open("image.jpg", "rb") as f:
|
| 303 |
+
image_b64 = base64.b64encode(f.read()).decode()
|
| 304 |
+
|
| 305 |
+
# SAM3 Text Prompts (NEW)
|
| 306 |
+
response = requests.post(
|
| 307 |
+
"https://your-username-sam3-api.hf.space/api/sam2_compatible",
|
| 308 |
+
json={
|
| 309 |
+
"data": [{
|
| 310 |
+
"inputs": {
|
| 311 |
+
"image": image_b64,
|
| 312 |
+
"text_prompts": ["kitten", "toy"],
|
| 313 |
+
"confidence_threshold": 0.5
|
| 314 |
+
}
|
| 315 |
+
}]
|
| 316 |
+
}
|
| 317 |
+
)
|
| 318 |
+
|
| 319 |
+
# SAM2 Compatible (Points/Boxes)
|
| 320 |
+
response = requests.post(
|
| 321 |
+
"https://your-username-sam3-api.hf.space/api/sam2_compatible",
|
| 322 |
+
json={
|
| 323 |
+
"data": [{
|
| 324 |
+
"inputs": {
|
| 325 |
+
"image": image_b64,
|
| 326 |
+
"boxes": [[100, 100, 200, 200]],
|
| 327 |
+
"confidence_threshold": 0.5
|
| 328 |
+
}
|
| 329 |
+
}]
|
| 330 |
+
}
|
| 331 |
+
)
|
| 332 |
+
|
| 333 |
+
result = response.json()
|
| 334 |
+
</pre>
|
| 335 |
+
|
| 336 |
+
<h3>3. API Parameters</h3>
|
| 337 |
+
<h4>SAM2-Compatible API Input</h4>
|
| 338 |
+
<pre>
|
| 339 |
+
{
|
| 340 |
+
"inputs": {
|
| 341 |
+
"image": "base64_encoded_image_string",
|
| 342 |
+
|
| 343 |
+
// SAM3 NEW: Text-based prompts
|
| 344 |
+
"text_prompts": ["person", "car"], // List of text descriptions
|
| 345 |
+
|
| 346 |
+
// SAM2 COMPATIBLE: Point-based prompts
|
| 347 |
+
"points": [[[x1, y1]], [[x2, y2]]], // Points for each object
|
| 348 |
+
"labels": [[1], [1]], // Labels for each point (1=foreground, 0=background)
|
| 349 |
+
|
| 350 |
+
// SAM2 COMPATIBLE: Bounding box prompts
|
| 351 |
+
"boxes": [[x1, y1, x2, y2], [x1, y1, x2, y2]], // Bounding boxes
|
| 352 |
+
|
| 353 |
+
"multimask_output": false, // Optional, defaults to False
|
| 354 |
+
"confidence_threshold": 0.5 // Optional, minimum confidence for returned masks
|
| 355 |
+
}
|
| 356 |
+
}
|
| 357 |
+
</pre>
|
| 358 |
+
|
| 359 |
+
<h4>API Response</h4>
|
| 360 |
+
<pre>
|
| 361 |
+
{
|
| 362 |
+
"masks": ["base64_encoded_mask_1", "base64_encoded_mask_2"],
|
| 363 |
+
"scores": [0.95, 0.87],
|
| 364 |
+
"num_objects": 2,
|
| 365 |
+
"sam_version": "3.0",
|
| 366 |
+
"success": true
|
| 367 |
+
}
|
| 368 |
+
</pre>
|
| 369 |
+
""")
|
| 370 |
+
|
| 371 |
return demo
|
| 372 |
|
| 373 |
if __name__ == "__main__":
|