Spaces:
Runtime error
Runtime error
Update app.py
Browse filesUpdated swing candle detection methods, much more reliable now
app.py
CHANGED
|
@@ -7,6 +7,116 @@ import pandas_ta as ta
|
|
| 7 |
from scipy.signal import find_peaks
|
| 8 |
import csv
|
| 9 |
import os
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 10 |
|
| 11 |
def process_csv(csv_file, lookback, bullish_stoch_value, bearish_stoch_value, check_bullish_swing, check_bearish_swing):
|
| 12 |
|
|
@@ -24,21 +134,25 @@ def process_csv(csv_file, lookback, bullish_stoch_value, bearish_stoch_value, ch
|
|
| 24 |
bearish_tickers = []
|
| 25 |
for ticker in all_tickers:
|
| 26 |
print(f"Processing {ticker} ({all_tickers.index(ticker)+1}/{ttl_tickers})")
|
|
|
|
| 27 |
try:
|
| 28 |
data = yf.Ticker(ticker)
|
| 29 |
hist = data.history(period="1y", actions=False)
|
| 30 |
if not hist.empty:
|
|
|
|
| 31 |
hist.ta.ema(close='Close', length=20, append=True)
|
| 32 |
hist.ta.ema(close='Close', length=50, append=True)
|
| 33 |
hist.ta.ema(close='Close', length=100, append=True)
|
| 34 |
hist.ta.sma(close='Close', length=150, append=True)
|
| 35 |
stoch = hist.ta.stoch(high='High', low='Low', close='Close')
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
|
|
|
|
|
|
| 42 |
|
| 43 |
except Exception as e:
|
| 44 |
print(f"An error occurred with ticker {ticker}: {e}")
|
|
@@ -65,13 +179,13 @@ def process_csv(csv_file, lookback, bullish_stoch_value, bearish_stoch_value, ch
|
|
| 65 |
|
| 66 |
iface = gr.Interface(
|
| 67 |
fn=process_csv,
|
| 68 |
-
inputs=[
|
| 69 |
InputFile(label="Upload CSV"),
|
| 70 |
-
InputNumber(label="EMA Loockback period (days, min 5 and max 60)", value=
|
| 71 |
-
InputNumber(label="Bullish Stochastic Value (below)", value=30),
|
| 72 |
-
InputNumber(label="Bearish Stochastic Value (above)", value=70),
|
| 73 |
-
InputCheckbox(label="Check Bullish Swing (HH + HL) (beta)"),
|
| 74 |
-
InputCheckbox(label="Check Bearish Swing (LH + LL) (beta)")
|
| 75 |
],
|
| 76 |
outputs=[
|
| 77 |
OutputFile(label="Download Bullish XLSX"),
|
|
@@ -82,8 +196,7 @@ iface = gr.Interface(
|
|
| 82 |
title="Stock Analysis",
|
| 83 |
description="""Upload a CSV file with a column named 'Ticker' (from TradingView or other) and
|
| 84 |
get a filtered shortlist of bullish and bearish stocks in return.
|
| 85 |
-
The tool will find 'stacked' EMAs + SMAs and check for Stochastics above or below the set values.
|
| 86 |
-
Optionally choose to filter stocks with consistent trends in recent swing highs and lows"""
|
| 87 |
)
|
| 88 |
|
| 89 |
iface.launch()
|
|
|
|
| 7 |
from scipy.signal import find_peaks
|
| 8 |
import csv
|
| 9 |
import os
|
| 10 |
+
import peakutils
|
| 11 |
+
from scipy.signal import argrelextrema
|
| 12 |
+
from collections import deque
|
| 13 |
+
import numpy as np
|
| 14 |
+
|
| 15 |
+
def getHigherLows(data: np.array, order=5, K=2):
|
| 16 |
+
# Get lows
|
| 17 |
+
low_idx = argrelextrema(data, np.less, order=order)[0]
|
| 18 |
+
lows = data[low_idx]
|
| 19 |
+
# Ensure consecutive lows are higher than previous lows
|
| 20 |
+
extrema = []
|
| 21 |
+
ex_deque = deque(maxlen=K)
|
| 22 |
+
for i, idx in enumerate(low_idx):
|
| 23 |
+
if i == 0:
|
| 24 |
+
ex_deque.append(idx)
|
| 25 |
+
continue
|
| 26 |
+
if lows[i] < lows[i-1]:
|
| 27 |
+
ex_deque.clear()
|
| 28 |
+
|
| 29 |
+
ex_deque.append(idx)
|
| 30 |
+
if len(ex_deque) == K:
|
| 31 |
+
extrema.append(ex_deque.copy())
|
| 32 |
+
|
| 33 |
+
return extrema
|
| 34 |
+
|
| 35 |
+
def getLowerHighs(data: np.array, order=5, K=2):
|
| 36 |
+
# Get highs
|
| 37 |
+
high_idx = argrelextrema(data, np.greater, order=order)[0]
|
| 38 |
+
highs = data[high_idx]
|
| 39 |
+
# Ensure consecutive highs are lower than previous highs
|
| 40 |
+
extrema = []
|
| 41 |
+
ex_deque = deque(maxlen=K)
|
| 42 |
+
for i, idx in enumerate(high_idx):
|
| 43 |
+
if i == 0:
|
| 44 |
+
ex_deque.append(idx)
|
| 45 |
+
continue
|
| 46 |
+
if highs[i] > highs[i-1]:
|
| 47 |
+
ex_deque.clear()
|
| 48 |
+
|
| 49 |
+
ex_deque.append(idx)
|
| 50 |
+
if len(ex_deque) == K:
|
| 51 |
+
extrema.append(ex_deque.copy())
|
| 52 |
+
|
| 53 |
+
return extrema
|
| 54 |
+
|
| 55 |
+
def getHigherHighs(data: np.array, order=5, K=2):
|
| 56 |
+
# Get highs
|
| 57 |
+
high_idx = argrelextrema(data, np.greater, order=5)[0]
|
| 58 |
+
highs = data[high_idx]
|
| 59 |
+
# Ensure consecutive highs are higher than previous highs
|
| 60 |
+
extrema = []
|
| 61 |
+
ex_deque = deque(maxlen=K)
|
| 62 |
+
for i, idx in enumerate(high_idx):
|
| 63 |
+
if i == 0:
|
| 64 |
+
ex_deque.append(idx)
|
| 65 |
+
continue
|
| 66 |
+
if highs[i] < highs[i-1]:
|
| 67 |
+
ex_deque.clear()
|
| 68 |
+
|
| 69 |
+
ex_deque.append(idx)
|
| 70 |
+
if len(ex_deque) == K:
|
| 71 |
+
extrema.append(ex_deque.copy())
|
| 72 |
+
|
| 73 |
+
return extrema
|
| 74 |
+
|
| 75 |
+
def getLowerLows(data: np.array, order=5, K=2):
|
| 76 |
+
# Get lows
|
| 77 |
+
low_idx = argrelextrema(data, np.less, order=order)[0]
|
| 78 |
+
lows = data[low_idx]
|
| 79 |
+
# Ensure consecutive lows are lower than previous lows
|
| 80 |
+
extrema = []
|
| 81 |
+
ex_deque = deque(maxlen=K)
|
| 82 |
+
for i, idx in enumerate(low_idx):
|
| 83 |
+
if i == 0:
|
| 84 |
+
ex_deque.append(idx)
|
| 85 |
+
continue
|
| 86 |
+
if lows[i] > lows[i-1]:
|
| 87 |
+
ex_deque.clear()
|
| 88 |
+
|
| 89 |
+
ex_deque.append(idx)
|
| 90 |
+
if len(ex_deque) == K:
|
| 91 |
+
extrema.append(ex_deque.copy())
|
| 92 |
+
|
| 93 |
+
return extrema
|
| 94 |
+
|
| 95 |
+
|
| 96 |
+
def check_trend(hist):
|
| 97 |
+
|
| 98 |
+
close = hist['Close'].values
|
| 99 |
+
order = 5
|
| 100 |
+
K = 2
|
| 101 |
+
|
| 102 |
+
hh = getHigherHighs(close, order, K)
|
| 103 |
+
hl = getHigherLows(close, order, K)
|
| 104 |
+
ll = getLowerLows(close, order, K)
|
| 105 |
+
lh = getLowerHighs(close, order, K)
|
| 106 |
+
|
| 107 |
+
# Get the most recent top and bottom labels
|
| 108 |
+
top_labels = hh if len(hh) > 0 and hh[-1][-1] > (lh[-1][-1] if len(lh) > 0 else 0) else lh
|
| 109 |
+
bottom_labels = hl if len(hl) > 0 and hl[-1][-1] > (ll[-1][-1] if len(ll) > 0 else 0) else ll
|
| 110 |
+
|
| 111 |
+
# Check if the most recent top and bottom labels form a pair
|
| 112 |
+
if top_labels == hh and bottom_labels == hl:
|
| 113 |
+
return True, 'bullish'
|
| 114 |
+
elif top_labels == lh and bottom_labels == ll:
|
| 115 |
+
return True, 'bearish'
|
| 116 |
+
else:
|
| 117 |
+
return False, 'uncertain'
|
| 118 |
+
|
| 119 |
+
|
| 120 |
|
| 121 |
def process_csv(csv_file, lookback, bullish_stoch_value, bearish_stoch_value, check_bullish_swing, check_bearish_swing):
|
| 122 |
|
|
|
|
| 134 |
bearish_tickers = []
|
| 135 |
for ticker in all_tickers:
|
| 136 |
print(f"Processing {ticker} ({all_tickers.index(ticker)+1}/{ttl_tickers})")
|
| 137 |
+
|
| 138 |
try:
|
| 139 |
data = yf.Ticker(ticker)
|
| 140 |
hist = data.history(period="1y", actions=False)
|
| 141 |
if not hist.empty:
|
| 142 |
+
|
| 143 |
hist.ta.ema(close='Close', length=20, append=True)
|
| 144 |
hist.ta.ema(close='Close', length=50, append=True)
|
| 145 |
hist.ta.ema(close='Close', length=100, append=True)
|
| 146 |
hist.ta.sma(close='Close', length=150, append=True)
|
| 147 |
stoch = hist.ta.stoch(high='High', low='Low', close='Close')
|
| 148 |
+
|
| 149 |
+
trend_exists, trend_type = check_trend(hist)
|
| 150 |
+
|
| 151 |
+
if all(hist['EMA_20'][-lookback:] > hist['EMA_50'][-lookback:]) and all(hist['EMA_50'][-lookback:] > hist['EMA_100'][-lookback:]) and all(hist['EMA_100'][-lookback:] > hist['SMA_150'][-lookback:]) and stoch['STOCHk_14_3_3'][-1] <= bullish_stoch_value and trend_exists and trend_type == 'bullish':
|
| 152 |
+
bullish_tickers.append([ticker, hist['Close'][-1], hist['Volume'][-1], 'Bullish'])
|
| 153 |
+
elif all(hist['EMA_20'][-lookback:] < hist['EMA_50'][-lookback:]) and all(hist['EMA_50'][-lookback:] < hist['EMA_100'][-lookback:]) and all(hist['EMA_100'][-lookback:] < hist['SMA_150'][-lookback:]) and stoch['STOCHk_14_3_3'][-1] >= bearish_stoch_value and trend_exists and trend_type == 'bearish':
|
| 154 |
+
bearish_tickers.append([ticker, hist['Close'][-1], hist['Volume'][-1], 'Bearish'])
|
| 155 |
+
|
| 156 |
|
| 157 |
except Exception as e:
|
| 158 |
print(f"An error occurred with ticker {ticker}: {e}")
|
|
|
|
| 179 |
|
| 180 |
iface = gr.Interface(
|
| 181 |
fn=process_csv,
|
| 182 |
+
inputs=[
|
| 183 |
InputFile(label="Upload CSV"),
|
| 184 |
+
InputNumber(label="EMA Loockback period (days, min 5 and max 60)", value=20),
|
| 185 |
+
InputNumber(label="Bullish Stochastic Value (equal or below)", value=30),
|
| 186 |
+
InputNumber(label="Bearish Stochastic Value (equal or above)", value=70),
|
| 187 |
+
InputCheckbox(label="Check Bullish Swing (HH + HL) (slower, in beta)"),
|
| 188 |
+
InputCheckbox(label="Check Bearish Swing (LH + LL) (slower, in beta)")
|
| 189 |
],
|
| 190 |
outputs=[
|
| 191 |
OutputFile(label="Download Bullish XLSX"),
|
|
|
|
| 196 |
title="Stock Analysis",
|
| 197 |
description="""Upload a CSV file with a column named 'Ticker' (from TradingView or other) and
|
| 198 |
get a filtered shortlist of bullish and bearish stocks in return.
|
| 199 |
+
The tool will find 'stacked' EMAs + SMAs and check for Stochastics above or below the set values."""
|
|
|
|
| 200 |
)
|
| 201 |
|
| 202 |
iface.launch()
|