Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,21 +1,58 @@
|
|
| 1 |
import streamlit as st
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2 |
from urllib.request import urlopen, Request
|
| 3 |
from bs4 import BeautifulSoup
|
| 4 |
-
import pandas as pd
|
| 5 |
import plotly
|
| 6 |
import plotly.express as px
|
| 7 |
-
import json # for graph plotting in website
|
| 8 |
-
# NLTK VADER for sentiment analysis
|
| 9 |
import nltk
|
| 10 |
nltk.downloader.download('vader_lexicon')
|
| 11 |
from nltk.sentiment.vader import SentimentIntensityAnalyzer
|
| 12 |
-
|
| 13 |
-
import subprocess
|
| 14 |
from datetime import datetime
|
| 15 |
-
import
|
| 16 |
|
| 17 |
-
|
| 18 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 19 |
|
| 20 |
def get_news(ticker):
|
| 21 |
url = finviz_url + ticker
|
|
@@ -103,43 +140,103 @@ def plot_daily_sentiment(parsed_and_scored_news, ticker):
|
|
| 103 |
fig = px.bar(mean_scores, x=mean_scores.index, y='sentiment_score', title = ticker + ' Daily Sentiment Scores')
|
| 104 |
return fig # instead of using fig.show(), we return fig and turn it into a graphjson object for displaying in web page later
|
| 105 |
|
| 106 |
-
#
|
| 107 |
-
|
| 108 |
-
|
| 109 |
|
| 110 |
st.header("Stock News Sentiment Analyzer")
|
| 111 |
|
| 112 |
ticker = st.text_input('Enter Stock Ticker', '').upper()
|
| 113 |
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
|
| 117 |
-
|
| 118 |
-
|
| 119 |
-
|
| 120 |
-
|
| 121 |
-
|
| 122 |
-
|
| 123 |
-
|
| 124 |
-
|
| 125 |
-
|
| 126 |
-
|
| 127 |
-
|
| 128 |
-
|
| 129 |
-
|
| 130 |
-
|
| 131 |
-
|
| 132 |
-
|
| 133 |
-
|
| 134 |
-
|
| 135 |
-
|
| 136 |
-
|
| 137 |
-
|
| 138 |
-
|
| 139 |
-
|
| 140 |
-
|
| 141 |
-
|
| 142 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 143 |
|
| 144 |
hide_streamlit_style = """
|
| 145 |
<style>
|
|
@@ -150,4 +247,5 @@ footer {visibility: hidden;}
|
|
| 150 |
st.markdown(hide_streamlit_style, unsafe_allow_html=True)
|
| 151 |
|
| 152 |
|
| 153 |
-
|
|
|
|
|
|
| 1 |
import streamlit as st
|
| 2 |
+
import yfinance as yf
|
| 3 |
+
import matplotlib.pyplot as plt
|
| 4 |
+
import pandas as pd
|
| 5 |
+
import numpy as np
|
| 6 |
from urllib.request import urlopen, Request
|
| 7 |
from bs4 import BeautifulSoup
|
|
|
|
| 8 |
import plotly
|
| 9 |
import plotly.express as px
|
|
|
|
|
|
|
| 10 |
import nltk
|
| 11 |
nltk.downloader.download('vader_lexicon')
|
| 12 |
from nltk.sentiment.vader import SentimentIntensityAnalyzer
|
|
|
|
|
|
|
| 13 |
from datetime import datetime
|
| 14 |
+
from sklearn.preprocessing import MinMaxScaler
|
| 15 |
|
| 16 |
+
finviz_url = 'https://finviz.com/quote.ashx?t='
|
| 17 |
|
| 18 |
+
sector_etf_mapping = {
|
| 19 |
+
'Consumer Durables': 'XLY',
|
| 20 |
+
'Consumer Discretionary': 'XLY',
|
| 21 |
+
'Consumer Staples': 'XLP',
|
| 22 |
+
'Energy': 'XLE',
|
| 23 |
+
'Financials': 'XLF',
|
| 24 |
+
'Health Care': 'XLV',
|
| 25 |
+
'Industrials': 'XLI',
|
| 26 |
+
'Materials': 'XLB',
|
| 27 |
+
'Real Estate': 'XLRE',
|
| 28 |
+
'Technology': 'XLK',
|
| 29 |
+
'Utilities': 'XLU',
|
| 30 |
+
'Communication Services': 'XLC'
|
| 31 |
+
}
|
| 32 |
+
|
| 33 |
+
# Function to get the trend of a given stock or ETF
|
| 34 |
+
def get_trend(ticker, period='1mo'):
|
| 35 |
+
stock = yf.Ticker(ticker)
|
| 36 |
+
hist = stock.history(period=period)
|
| 37 |
+
return hist['Close']
|
| 38 |
+
|
| 39 |
+
# Function to normalize a pandas series
|
| 40 |
+
def normalize(series):
|
| 41 |
+
if len(series.unique()) > 1: # Check if the series has more than one unique value
|
| 42 |
+
scaler = MinMaxScaler(feature_range=(0, 1))
|
| 43 |
+
scaled_values = scaler.fit_transform(series.values.reshape(-1,1))
|
| 44 |
+
return pd.Series(scaled_values.flatten(), index=series.index)
|
| 45 |
+
else:
|
| 46 |
+
return series # If the series has only one unique value, return it as is
|
| 47 |
+
|
| 48 |
+
|
| 49 |
+
# Function to get the trend of a given sector or industry
|
| 50 |
+
def get_trend_from_csv(df, column, value, period='1mo'):
|
| 51 |
+
# Filter the dataframe by the given sector or industry
|
| 52 |
+
df_filtered = df[df[column] == value]
|
| 53 |
+
# Calculate the mean of the closing prices of all stocks in the sector or industry
|
| 54 |
+
trend = df_filtered.resample(period).mean()
|
| 55 |
+
return trend
|
| 56 |
|
| 57 |
def get_news(ticker):
|
| 58 |
url = finviz_url + ticker
|
|
|
|
| 140 |
fig = px.bar(mean_scores, x=mean_scores.index, y='sentiment_score', title = ticker + ' Daily Sentiment Scores')
|
| 141 |
return fig # instead of using fig.show(), we return fig and turn it into a graphjson object for displaying in web page later
|
| 142 |
|
| 143 |
+
# Streamlit app
|
| 144 |
+
st.set_page_config(page_title = "Stock Trend and News Sentiment Analyzer", layout = "wide")
|
|
|
|
| 145 |
|
| 146 |
st.header("Stock News Sentiment Analyzer")
|
| 147 |
|
| 148 |
ticker = st.text_input('Enter Stock Ticker', '').upper()
|
| 149 |
|
| 150 |
+
uploaded_file = st.file_uploader("Choose a CSV file", type="csv")
|
| 151 |
+
if uploaded_file is not None:
|
| 152 |
+
data = pd.read_csv(uploaded_file)
|
| 153 |
+
|
| 154 |
+
try:
|
| 155 |
+
# Display company name, last close, and sector from CSV
|
| 156 |
+
company_name = data.loc[data['Ticker'] == ticker, 'Description'].values[0]
|
| 157 |
+
last_close = data.loc[data['Ticker'] == ticker, 'Price'].values[0]
|
| 158 |
+
csv_sector = data.loc[data['Ticker'] == ticker, 'Sector'].values[0]
|
| 159 |
+
st.write(f"Company: {company_name} ({csv_sector})")
|
| 160 |
+
st.write(f"Last Close: {last_close}")
|
| 161 |
+
|
| 162 |
+
|
| 163 |
+
# Define a list of all possible sectors and their corresponding ETFs
|
| 164 |
+
all_sectors = ['XLY', 'XLP', 'XLE', 'XLF', 'XLV', 'XLI', 'XLB', 'XLRE', 'XLK', 'XLU', 'XLC']
|
| 165 |
+
sector_mapping = {
|
| 166 |
+
'XLY': 'Consumer Discretionary',
|
| 167 |
+
'XLP': 'Consumer Staples',
|
| 168 |
+
'XLE': 'Energy',
|
| 169 |
+
'XLF': 'Financials',
|
| 170 |
+
'XLV': 'Health Care',
|
| 171 |
+
'XLI': 'Industrials',
|
| 172 |
+
'XLB': 'Materials',
|
| 173 |
+
'XLRE': 'Real Estate',
|
| 174 |
+
'XLK': 'Technology',
|
| 175 |
+
'XLU': 'Utilities',
|
| 176 |
+
'XLC': 'Communication Services'
|
| 177 |
+
}
|
| 178 |
+
|
| 179 |
+
# Get sector from CSV
|
| 180 |
+
sector = data.loc[data['Ticker'] == ticker, 'Sector'].values[0]
|
| 181 |
+
|
| 182 |
+
# If the sector is not found in the list of all sectors, set it to '--Not Found--'
|
| 183 |
+
if sector not in sector_mapping.values():
|
| 184 |
+
sector = '--Not Found--'
|
| 185 |
+
else:
|
| 186 |
+
# Convert the sector to its corresponding ETF
|
| 187 |
+
sector = list(sector_mapping.keys())[list(sector_mapping.values()).index(sector)]
|
| 188 |
+
|
| 189 |
+
# Display a dropdown menu for the sector with the current sector selected by default
|
| 190 |
+
sector = st.selectbox('Sector', options=all_sectors, index=all_sectors.index(sector) if sector in all_sectors else 0)
|
| 191 |
+
|
| 192 |
+
# Display the sector mapping table
|
| 193 |
+
st.table(pd.DataFrame(list(sector_mapping.items()), columns=['ETF', 'Sector']))
|
| 194 |
+
|
| 195 |
+
if st.button('Submit'):
|
| 196 |
+
# Get trends
|
| 197 |
+
stock_trend = get_trend(ticker)
|
| 198 |
+
sector_trend = get_trend(sector)
|
| 199 |
+
|
| 200 |
+
# Normalize trends
|
| 201 |
+
scaler = MinMaxScaler()
|
| 202 |
+
stock_trend = pd.DataFrame(scaler.fit_transform(stock_trend.values.reshape(-1,1)), index=stock_trend.index, columns=['Close'])
|
| 203 |
+
sector_trend = pd.DataFrame(scaler.fit_transform(sector_trend.values.reshape(-1,1)), index=sector_trend.index, columns=['Close'])
|
| 204 |
+
|
| 205 |
+
# Plot trends
|
| 206 |
+
plt.figure(figsize=(12,6))
|
| 207 |
+
plt.plot(stock_trend.index, stock_trend.values, label=ticker)
|
| 208 |
+
plt.plot(sector_trend.index, sector_trend.values, label=sector)
|
| 209 |
+
plt.legend()
|
| 210 |
+
plt.grid(True)
|
| 211 |
+
plt.title('Stock and Sector Trend over the past 30 days')
|
| 212 |
+
st.pyplot(plt)
|
| 213 |
+
|
| 214 |
+
st.subheader("Hourly and Daily Sentiment of {} Stock".format(ticker))
|
| 215 |
+
news_table = get_news(ticker)
|
| 216 |
+
parsed_news_df = parse_news(news_table)
|
| 217 |
+
parsed_and_scored_news = score_news(parsed_news_df)
|
| 218 |
+
fig_hourly = plot_hourly_sentiment(parsed_and_scored_news, ticker)
|
| 219 |
+
fig_daily = plot_daily_sentiment(parsed_and_scored_news, ticker)
|
| 220 |
+
|
| 221 |
+
st.plotly_chart(fig_hourly)
|
| 222 |
+
st.plotly_chart(fig_daily)
|
| 223 |
+
|
| 224 |
+
description = """
|
| 225 |
+
The above chart averages the sentiment scores of {} stock hourly and daily.
|
| 226 |
+
The table below gives each of the most recent headlines of the stock and the negative, neutral, positive and an aggregated sentiment score.
|
| 227 |
+
The news headlines are obtained from the FinViz website.
|
| 228 |
+
Sentiments are given by the nltk.sentiment.vader Python library.
|
| 229 |
+
Adapted from https://github.com/damianboh/stock_sentiment_streamlit
|
| 230 |
+
""".format(ticker)
|
| 231 |
+
|
| 232 |
+
st.write(description)
|
| 233 |
+
st.table(parsed_and_scored_news)
|
| 234 |
+
|
| 235 |
+
except Exception as e:
|
| 236 |
+
print(str(e))
|
| 237 |
+
st.write("Enter a stock ticker, e.g. 'AAPL' above and hit Enter.")
|
| 238 |
+
else:
|
| 239 |
+
st.write("Please upload a CSV file.")
|
| 240 |
|
| 241 |
hide_streamlit_style = """
|
| 242 |
<style>
|
|
|
|
| 247 |
st.markdown(hide_streamlit_style, unsafe_allow_html=True)
|
| 248 |
|
| 249 |
|
| 250 |
+
|
| 251 |
+
# streamlit run "c:/Dropbox/BIMWERX/_work/YouTube/elephant/230701-10 - ML Predict/src/trend_sentiment.py"
|