import numpy as np from huggingface_hub import snapshot_download from PIL import Image base_model_path = "HuggingFaceTB/SmolVLM-Instruct" peft_model_path = "chuuhtetnaing/smolvlm-mmocr-sft-round-3" def warmup_model(): """ Warm up the VLM model with a dummy inference to reduce initial loading time. """ from ocr import recognition print("Warming up VLM model...") dummy_image = Image.fromarray(np.ones((64, 128, 3), dtype=np.uint8) * 255) dummy_detection_data = [{"box": [10, 10, 50, 30], "crop": dummy_image, "line_no": 1}] try: _ = recognition.inference(dummy_detection_data) print("VLM model warmed up successfully!") except Exception as e: print(f"Warning: Model warmup failed: {e}") def download_pretrained_models(): snapshot_download(repo_id=base_model_path, local_dir="./smol-vlm-model/base-model") snapshot_download(repo_id=peft_model_path, local_dir="./smol-vlm-model/peft-model")