Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -0,0 +1,54 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
|
| 3 |
+
from datasets import load_dataset
|
| 4 |
+
|
| 5 |
+
# Load the WikiSQL dataset
|
| 6 |
+
wikisql_dataset = load_dataset("wikisql", split='train[:100]') # Load a subset of the dataset
|
| 7 |
+
|
| 8 |
+
# Extract schema information from the dataset
|
| 9 |
+
table_names = set()
|
| 10 |
+
column_names = set()
|
| 11 |
+
for item in wikisql_dataset:
|
| 12 |
+
table_names.add(item['table']['name'])
|
| 13 |
+
for column in item['table']['header']:
|
| 14 |
+
column_names.add(column)
|
| 15 |
+
|
| 16 |
+
# Load tokenizer and model
|
| 17 |
+
tokenizer = AutoTokenizer.from_pretrained("mrm8488/t5-base-finetuned-wikiSQL")
|
| 18 |
+
model = AutoModelForSeq2SeqLM.from_pretrained("mrm8488/t5-base-finetuned-wikiSQL")
|
| 19 |
+
|
| 20 |
+
def post_process_sql_query(sql_query):
|
| 21 |
+
# Modify the SQL query to match the dataset's schema
|
| 22 |
+
# This is just an example and might need to be adapted based on the dataset and model output
|
| 23 |
+
for table_name in table_names:
|
| 24 |
+
if "TABLE" in sql_query:
|
| 25 |
+
sql_query = sql_query.replace("TABLE", table_name)
|
| 26 |
+
break # Assuming only one table is referenced in the query
|
| 27 |
+
for column_name in column_names:
|
| 28 |
+
if "COLUMN" in sql_query:
|
| 29 |
+
sql_query = sql_query.replace("COLUMN", column_name, 1)
|
| 30 |
+
return sql_query
|
| 31 |
+
|
| 32 |
+
def generate_sql_from_user_input(query):
|
| 33 |
+
# Generate SQL for the user's query
|
| 34 |
+
input_text = "translate English to SQL: " + query
|
| 35 |
+
inputs = tokenizer(input_text, return_tensors="pt", padding=True)
|
| 36 |
+
outputs = model.generate(**inputs, max_length=512)
|
| 37 |
+
sql_query = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
| 38 |
+
|
| 39 |
+
# Post-process the SQL query to match the dataset's schema
|
| 40 |
+
sql_query = post_process_sql_query(sql_query)
|
| 41 |
+
return sql_query
|
| 42 |
+
|
| 43 |
+
# Create a Gradio interface
|
| 44 |
+
interface = gr.Interface(
|
| 45 |
+
fn=generate_sql_from_user_input,
|
| 46 |
+
inputs=gr.Textbox(label="Enter your natural language query"),
|
| 47 |
+
outputs=gr.Textbox(label="Generated SQL Query"),
|
| 48 |
+
title="NL to SQL with T5 using WikiSQL Dataset",
|
| 49 |
+
description="This model generates an SQL query for your natural language input based on the WikiSQL dataset."
|
| 50 |
+
)
|
| 51 |
+
|
| 52 |
+
# Launch the app
|
| 53 |
+
if __name__ == "__main__":
|
| 54 |
+
interface.launch()
|