Spaces:
Sleeping
Sleeping
kurniawan
commited on
Commit
·
a1bef06
1
Parent(s):
9b56554
Add cache check before downloading models
Browse files- src/streamlit_app.py +28 -20
src/streamlit_app.py
CHANGED
|
@@ -3,6 +3,7 @@ import pickle
|
|
| 3 |
import numpy as np
|
| 4 |
import streamlit as st
|
| 5 |
import gdown
|
|
|
|
| 6 |
|
| 7 |
# File IDs
|
| 8 |
model_id = "1HSQTjJ_hvBBmVJmYUmrkq5T7ubpfDwzF"
|
|
@@ -14,15 +15,19 @@ top_country_url = f"https://drive.google.com/uc?id={top_country_id}"
|
|
| 14 |
|
| 15 |
@st.cache_resource
|
| 16 |
def load_model():
|
| 17 |
-
|
| 18 |
-
|
|
|
|
|
|
|
| 19 |
return pickle.load(f)
|
| 20 |
|
| 21 |
|
| 22 |
@st.cache_resource
|
| 23 |
def load_top_country():
|
| 24 |
-
|
| 25 |
-
|
|
|
|
|
|
|
| 26 |
return pickle.load(f)
|
| 27 |
|
| 28 |
|
|
@@ -31,7 +36,8 @@ top_country = load_top_country()
|
|
| 31 |
|
| 32 |
st.set_page_config(page_title="Hotel Booking Prediction", layout="wide")
|
| 33 |
|
| 34 |
-
st.markdown(
|
|
|
|
| 35 |
<div style="
|
| 36 |
background-color: white;
|
| 37 |
padding: 50px;
|
|
@@ -51,14 +57,16 @@ st.markdown("""
|
|
| 51 |
Fill in the form below to predict hotel booking!
|
| 52 |
</p>
|
| 53 |
</div>
|
| 54 |
-
""",
|
|
|
|
|
|
|
| 55 |
|
| 56 |
st.write("")
|
| 57 |
st.write("")
|
| 58 |
|
| 59 |
with st.form(key="hotel_bookings"):
|
| 60 |
col1, col2 = st.columns(2)
|
| 61 |
-
|
| 62 |
with col1:
|
| 63 |
name = st.selectbox("Hotel Type", ("city_hotel", "resort_hotel"), index=0)
|
| 64 |
lead = st.number_input(
|
|
@@ -88,7 +96,7 @@ with st.form(key="hotel_bookings"):
|
|
| 88 |
),
|
| 89 |
index=0,
|
| 90 |
)
|
| 91 |
-
|
| 92 |
with col2:
|
| 93 |
arrival_week = st.number_input(
|
| 94 |
"Arrival Weeks",
|
|
@@ -108,29 +116,29 @@ with st.form(key="hotel_bookings"):
|
|
| 108 |
)
|
| 109 |
|
| 110 |
submitted = st.form_submit_button("Predict", use_container_width=True)
|
| 111 |
-
|
| 112 |
if submitted:
|
| 113 |
# Prepare data for prediction
|
| 114 |
data = {
|
| 115 |
-
|
| 116 |
-
|
| 117 |
-
|
| 118 |
-
|
| 119 |
-
|
| 120 |
-
|
| 121 |
}
|
| 122 |
-
|
| 123 |
df = pd.DataFrame([data])
|
| 124 |
-
|
| 125 |
try:
|
| 126 |
prediction = model.predict(df)
|
| 127 |
-
|
| 128 |
st.success("Prediction Complete!")
|
| 129 |
-
|
| 130 |
if prediction[0] == 1:
|
| 131 |
st.error("⚠️ This booking is likely to be CANCELLED")
|
| 132 |
else:
|
| 133 |
st.success("✅ This booking is likely to be CONFIRMED")
|
| 134 |
-
|
| 135 |
except Exception as e:
|
| 136 |
st.error(f"Error making prediction: {str(e)}")
|
|
|
|
| 3 |
import numpy as np
|
| 4 |
import streamlit as st
|
| 5 |
import gdown
|
| 6 |
+
import os
|
| 7 |
|
| 8 |
# File IDs
|
| 9 |
model_id = "1HSQTjJ_hvBBmVJmYUmrkq5T7ubpfDwzF"
|
|
|
|
| 15 |
|
| 16 |
@st.cache_resource
|
| 17 |
def load_model():
|
| 18 |
+
model_path = "best_rf_model.pkl"
|
| 19 |
+
if not os.path.exists(model_path):
|
| 20 |
+
gdown.download(model_url, model_path, quiet=False)
|
| 21 |
+
with open(model_path, "rb") as f:
|
| 22 |
return pickle.load(f)
|
| 23 |
|
| 24 |
|
| 25 |
@st.cache_resource
|
| 26 |
def load_top_country():
|
| 27 |
+
country_path = "top_country.pkl"
|
| 28 |
+
if not os.path.exists(country_path):
|
| 29 |
+
gdown.download(top_country_url, country_path, quiet=False)
|
| 30 |
+
with open(country_path, "rb") as f:
|
| 31 |
return pickle.load(f)
|
| 32 |
|
| 33 |
|
|
|
|
| 36 |
|
| 37 |
st.set_page_config(page_title="Hotel Booking Prediction", layout="wide")
|
| 38 |
|
| 39 |
+
st.markdown(
|
| 40 |
+
"""
|
| 41 |
<div style="
|
| 42 |
background-color: white;
|
| 43 |
padding: 50px;
|
|
|
|
| 57 |
Fill in the form below to predict hotel booking!
|
| 58 |
</p>
|
| 59 |
</div>
|
| 60 |
+
""",
|
| 61 |
+
unsafe_allow_html=True,
|
| 62 |
+
)
|
| 63 |
|
| 64 |
st.write("")
|
| 65 |
st.write("")
|
| 66 |
|
| 67 |
with st.form(key="hotel_bookings"):
|
| 68 |
col1, col2 = st.columns(2)
|
| 69 |
+
|
| 70 |
with col1:
|
| 71 |
name = st.selectbox("Hotel Type", ("city_hotel", "resort_hotel"), index=0)
|
| 72 |
lead = st.number_input(
|
|
|
|
| 96 |
),
|
| 97 |
index=0,
|
| 98 |
)
|
| 99 |
+
|
| 100 |
with col2:
|
| 101 |
arrival_week = st.number_input(
|
| 102 |
"Arrival Weeks",
|
|
|
|
| 116 |
)
|
| 117 |
|
| 118 |
submitted = st.form_submit_button("Predict", use_container_width=True)
|
| 119 |
+
|
| 120 |
if submitted:
|
| 121 |
# Prepare data for prediction
|
| 122 |
data = {
|
| 123 |
+
"hotel": name,
|
| 124 |
+
"lead_time": lead,
|
| 125 |
+
"arrival_date_year": int(arrival_year),
|
| 126 |
+
"arrival_date_month": arrival_month,
|
| 127 |
+
"arrival_date_week_number": arrival_week,
|
| 128 |
+
"arrival_date_day_of_month": arrival_day,
|
| 129 |
}
|
| 130 |
+
|
| 131 |
df = pd.DataFrame([data])
|
| 132 |
+
|
| 133 |
try:
|
| 134 |
prediction = model.predict(df)
|
| 135 |
+
|
| 136 |
st.success("Prediction Complete!")
|
| 137 |
+
|
| 138 |
if prediction[0] == 1:
|
| 139 |
st.error("⚠️ This booking is likely to be CANCELLED")
|
| 140 |
else:
|
| 141 |
st.success("✅ This booking is likely to be CONFIRMED")
|
| 142 |
+
|
| 143 |
except Exception as e:
|
| 144 |
st.error(f"Error making prediction: {str(e)}")
|