Spaces:
Running
Running
File size: 12,080 Bytes
7f615fd 0d6c60b 7f615fd 0d6c60b 7f615fd 0d6c60b 7f615fd 0d6c60b 7f615fd 0d6c60b 7f615fd 0d6c60b 7f615fd 0d6c60b 7f615fd 0d6c60b 7f615fd 0d6c60b 7f615fd 0d6c60b 7f615fd 0d6c60b 7f615fd 0d6c60b 7f615fd 0d6c60b 7f615fd 0d6c60b 7f615fd 0d6c60b 7f615fd 0d6c60b 7f615fd 0d6c60b 7f615fd 0d6c60b 7f615fd 0d6c60b 7f615fd 0d6c60b 7f615fd 0d6c60b 7f615fd 0d6c60b 7f615fd 0d6c60b 7f615fd 0d6c60b 7f615fd 0d6c60b 7f615fd 0d6c60b 7f615fd 0d6c60b 7f615fd 0d6c60b 7f615fd 0d6c60b 7f615fd 0d6c60b 7f615fd 0d6c60b 7f615fd 0d6c60b 7f615fd 0d6c60b 7f615fd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 |
import gradio as gr
import os
import tempfile
import shutil
import re
import json
import datetime
from pathlib import Path
from huggingface_hub import HfApi, hf_hub_download
from safetensors.torch import load_file, save_file
import torch
# Optional ModelScope integration
try:
from modelscope.hub.snapshot_download import snapshot_download as ms_snapshot_download
from modelscope.hub.file_download import model_file_download as ms_file_download
from modelscope.hub.api import HubApi as ModelScopeApi
MODELScope_AVAILABLE = True
except ImportError:
MODELScope_AVAILABLE = False
# --- Conversion Function: Safetensors β FP8 Safetensors ---
def convert_safetensors_to_fp8(safetensors_path, output_dir, fp8_format, progress=gr.Progress()):
progress(0.1, desc="Starting FP8 conversion...")
try:
def read_safetensors_metadata(path):
with open(path, 'rb') as f:
header_size = int.from_bytes(f.read(8), 'little')
header_json = f.read(header_size).decode('utf-8')
header = json.loads(header_json)
return header.get('__metadata__', {})
metadata = read_safetensors_metadata(safetensors_path)
progress(0.3, desc="Loaded model metadata.")
state_dict = load_file(safetensors_path)
progress(0.5, desc="Loaded model weights.")
if fp8_format == "e5m2":
fp8_dtype = torch.float8_e5m2
else:
fp8_dtype = torch.float8_e4m3fn
sd_pruned = {}
total = len(state_dict)
for i, key in enumerate(state_dict):
progress(0.5 + 0.4 * (i / total), desc=f"Converting tensor {i+1}/{total} to FP8 ({fp8_format})...")
if state_dict[key].dtype in [torch.float16, torch.float32, torch.bfloat16]:
sd_pruned[key] = state_dict[key].to(fp8_dtype)
else:
sd_pruned[key] = state_dict[key]
base_name = os.path.splitext(os.path.basename(safetensors_path))[0]
output_path = os.path.join(output_dir, f"{base_name}-fp8-{fp8_format}.safetensors")
save_file(sd_pruned, output_path, metadata={"format": "pt", "fp8_format": fp8_format, **metadata})
progress(0.9, desc="Saved FP8 safetensors file.")
progress(1.0, desc="FP8 conversion complete!")
return True, f"Model successfully pruned to FP8 ({fp8_format})."
except Exception as e:
return False, str(e)
# --- Source download helper ---
def download_safetensors_file(
source_type,
repo_url,
filename,
hf_token=None,
modelscope_token=None,
progress=gr.Progress()
):
temp_dir = tempfile.mkdtemp()
try:
if source_type == "huggingface":
clean_url = repo_url.strip().rstrip("/")
if "huggingface.co" not in clean_url:
raise ValueError("Invalid Hugging Face URL")
src_repo_id = clean_url.replace("https://huggingface.co/", "")
safetensors_path = hf_hub_download(
repo_id=src_repo_id,
filename=filename,
cache_dir=temp_dir,
token=hf_token
)
elif source_type == "modelscope":
if not MODELScope_AVAILABLE:
raise ImportError("ModelScope not installed. Install with: pip install modelscope")
clean_url = repo_url.strip().rstrip("/")
if "modelscope.cn" in clean_url:
src_repo_id = "/".join(clean_url.split("/")[-2:])
else:
src_repo_id = repo_url.strip()
if modelscope_token:
os.environ["MODELSCOPE_CACHE"] = temp_dir
safetensors_path = ms_file_download(
model_id=src_repo_id,
file_path=filename,
token=modelscope_token
)
else:
safetensors_path = ms_file_download(
model_id=src_repo_id,
file_path=filename
)
else:
raise ValueError("Unknown source type")
return safetensors_path, temp_dir
except Exception as e:
shutil.rmtree(temp_dir, ignore_errors=True)
raise e
# --- Upload helper ---
def upload_to_target(
target_type,
new_repo_id,
output_dir,
fp8_format,
hf_token=None,
modelscope_token=None,
private_repo=False,
progress=gr.Progress()
):
if target_type == "huggingface":
if not hf_token:
raise ValueError("Hugging Face token required")
api = HfApi(token=hf_token)
api.create_repo(
repo_id=new_repo_id,
private=private_repo,
repo_type="model",
exist_ok=True
)
api.upload_folder(
repo_id=new_repo_id,
folder_path=output_dir,
repo_type="model",
token=hf_token,
commit_message=f"Upload FP8 ({fp8_format}) model"
)
return f"https://huggingface.co/{new_repo_id}"
elif target_type == "modelscope":
if not MODELScope_AVAILABLE:
raise ImportError("ModelScope not installed")
api = ModelScopeApi()
if modelscope_token:
api.login(modelscope_token)
# ModelScope requires model_type and license
api.push_model(
model_id=new_repo_id,
model_dir=output_dir,
commit_message=f"Upload FP8 ({fp8_format}) model"
)
return f"https://modelscope.cn/models/{new_repo_id}"
else:
raise ValueError("Unknown target type")
# --- Main Processing Function ---
def process_and_upload_fp8(
source_type,
repo_url,
safetensors_filename,
fp8_format,
target_type,
new_repo_id,
hf_token,
modelscope_token,
private_repo,
progress=gr.Progress()
):
required_fields = [repo_url, safetensors_filename, new_repo_id]
if source_type == "huggingface":
required_fields.append(hf_token)
if target_type == "huggingface":
required_fields.append(hf_token)
if target_type == "modelscope" and modelscope_token:
required_fields.append(modelscope_token)
if not all(required_fields):
return None, "β Error: Please fill in all required fields.", ""
if not re.match(r"^[a-zA-Z0-9._-]+/[a-zA-Z0-9._-]+$", new_repo_id):
return None, "β Invalid repository ID format. Use 'username/model-name'.", ""
temp_dir = None
output_dir = tempfile.mkdtemp()
try:
# Authenticate & download
progress(0.05, desc="Authenticating and downloading...")
safetensors_path, temp_dir = download_safetensors_file(
source_type=source_type,
repo_url=repo_url,
filename=safetensors_filename,
hf_token=hf_token,
modelscope_token=modelscope_token,
progress=progress
)
progress(0.25, desc="Download complete.")
# Convert
success, msg = convert_safetensors_to_fp8(safetensors_path, output_dir, fp8_format, progress)
if not success:
return None, f"β Conversion failed: {msg}", ""
# Upload
progress(0.92, desc="Uploading model...")
repo_url_final = upload_to_target(
target_type=target_type,
new_repo_id=new_repo_id,
output_dir=output_dir,
fp8_format=fp8_format,
hf_token=hf_token,
modelscope_token=modelscope_token,
private_repo=private_repo,
progress=progress
)
# README
base_name = os.path.splitext(safetensors_filename)[0]
fp8_filename = f"{base_name}-fp8-{fp8_format}.safetensors"
readme = f"""---
library_name: diffusers
tags:
- fp8
- safetensors
- pruned
- diffusion
- converted-by-gradio
- fp8-{fp8_format}
---
# FP8 Pruned Model ({fp8_format.upper()})
Converted from: `{repo_url}`
File: `{safetensors_filename}` β `{fp8_filename}`
Quantization: **FP8 ({fp8_format.upper()})**
Converted on: {datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S')}
> β οΈ Requires PyTorch β₯ 2.1 and compatible hardware for FP8 acceleration.
"""
readme_path = os.path.join(output_dir, "README.md")
with open(readme_path, "w") as f:
f.write(readme)
# Re-upload README if needed (for ModelScope, already included; for HF, upload separately)
if target_type == "huggingface":
HfApi(token=hf_token).upload_file(
path_or_fileobj=readme_path,
path_in_repo="README.md",
repo_id=new_repo_id,
repo_type="model",
token=hf_token
)
progress(1.0, desc="β
Done!")
result_html = f"""
β
Success!
Your FP8 model is uploaded to: <a href="{repo_url_final}" target="_blank">{new_repo_id}</a>
Source: {source_type.title()} β Target: {target_type.title()}
"""
return gr.HTML(result_html), "β
FP8 conversion and upload successful!", ""
except Exception as e:
return None, f"β Error: {str(e)}", ""
finally:
if temp_dir:
shutil.rmtree(temp_dir, ignore_errors=True)
shutil.rmtree(output_dir, ignore_errors=True)
# --- Gradio UI ---
with gr.Blocks(title="Safetensors β FP8 Pruner (HF + ModelScope)") as demo:
gr.Markdown("# π Safetensors to FP8 Pruner")
gr.Markdown("Convert `.safetensors` models to **FP8** and upload to **Hugging Face** or **ModelScope**.")
with gr.Row():
with gr.Column():
source_type = gr.Radio(
choices=["huggingface", "modelscope"],
value="huggingface",
label="Source Platform"
)
repo_url = gr.Textbox(
label="Source Repository URL",
placeholder="e.g., https://huggingface.co/Yabo/FramePainter OR your-modelscope-id",
info="Hugging Face URL or ModelScope model ID"
)
safetensors_filename = gr.Textbox(
label="Safetensors Filename",
placeholder="unet_diffusion_pytorch_model.safetensors"
)
fp8_format = gr.Radio(
choices=["e4m3fn", "e5m2"],
value="e5m2",
label="FP8 Format",
info="E5M2: wider range; E4M3FN: better near-zero precision"
)
hf_token = gr.Textbox(
label="Hugging Face Token (if using HF)",
type="password"
)
modelscope_token = gr.Textbox(
label="ModelScope Token (optional)",
type="password",
visible=MODELScope_AVAILABLE
)
with gr.Column():
target_type = gr.Radio(
choices=["huggingface", "modelscope"],
value="huggingface",
label="Target Platform"
)
new_repo_id = gr.Textbox(
label="New Repository ID",
placeholder="your-username/my-model-fp8"
)
private_repo = gr.Checkbox(label="Make Private (HF only)", value=False)
convert_btn = gr.Button("π Convert & Upload", variant="primary")
with gr.Row():
status_output = gr.Markdown()
repo_link_output = gr.HTML()
convert_btn.click(
fn=process_and_upload_fp8,
inputs=[
source_type,
repo_url,
safetensors_filename,
fp8_format,
target_type,
new_repo_id,
hf_token,
modelscope_token,
private_repo
],
outputs=[repo_link_output, status_output],
show_progress=True
)
gr.Examples(
examples=[
["huggingface", "https://huggingface.co/Yabo/FramePainter", "unet_diffusion_pytorch_model.safetensors", "e5m2", "huggingface"]
],
inputs=[source_type, repo_url, safetensors_filename, fp8_format, target_type]
)
demo.launch() |