File size: 12,080 Bytes
7f615fd
 
 
 
 
 
 
 
 
 
 
 
0d6c60b
 
 
 
 
 
 
 
 
 
7f615fd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0d6c60b
7f615fd
 
 
 
 
 
 
 
 
0d6c60b
7f615fd
 
 
 
 
 
 
 
 
 
 
 
0d6c60b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7f615fd
0d6c60b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7f615fd
 
0d6c60b
7f615fd
0d6c60b
7f615fd
 
 
0d6c60b
 
 
 
 
7f615fd
0d6c60b
 
 
7f615fd
 
 
0d6c60b
7f615fd
 
 
 
0d6c60b
 
 
 
 
 
 
 
 
 
 
7f615fd
 
0d6c60b
7f615fd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0d6c60b
7f615fd
 
 
0d6c60b
7f615fd
0d6c60b
7f615fd
0d6c60b
 
7f615fd
 
0d6c60b
 
 
 
 
 
 
 
 
7f615fd
 
 
 
0d6c60b
 
7f615fd
 
 
 
 
 
0d6c60b
 
7f615fd
 
 
0d6c60b
7f615fd
0d6c60b
7f615fd
 
 
0d6c60b
 
 
 
 
7f615fd
0d6c60b
 
 
7f615fd
 
 
0d6c60b
7f615fd
 
 
 
 
0d6c60b
7f615fd
 
0d6c60b
 
 
 
 
7f615fd
0d6c60b
7f615fd
 
0d6c60b
 
 
 
 
7f615fd
 
0d6c60b
7f615fd
0d6c60b
7f615fd
 
 
 
 
 
 
 
 
0d6c60b
 
 
 
 
 
 
 
 
 
 
7f615fd
 
 
 
 
 
0d6c60b
7f615fd
0d6c60b
7f615fd
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
import gradio as gr
import os
import tempfile
import shutil
import re
import json
import datetime
from pathlib import Path
from huggingface_hub import HfApi, hf_hub_download
from safetensors.torch import load_file, save_file
import torch

# Optional ModelScope integration
try:
    from modelscope.hub.snapshot_download import snapshot_download as ms_snapshot_download
    from modelscope.hub.file_download import model_file_download as ms_file_download
    from modelscope.hub.api import HubApi as ModelScopeApi
    MODELScope_AVAILABLE = True
except ImportError:
    MODELScope_AVAILABLE = False

# --- Conversion Function: Safetensors β†’ FP8 Safetensors ---
def convert_safetensors_to_fp8(safetensors_path, output_dir, fp8_format, progress=gr.Progress()):
    progress(0.1, desc="Starting FP8 conversion...")

    try:
        def read_safetensors_metadata(path):
            with open(path, 'rb') as f:
                header_size = int.from_bytes(f.read(8), 'little')
                header_json = f.read(header_size).decode('utf-8')
                header = json.loads(header_json)
                return header.get('__metadata__', {})

        metadata = read_safetensors_metadata(safetensors_path)
        progress(0.3, desc="Loaded model metadata.")

        state_dict = load_file(safetensors_path)
        progress(0.5, desc="Loaded model weights.")

        if fp8_format == "e5m2":
            fp8_dtype = torch.float8_e5m2
        else:
            fp8_dtype = torch.float8_e4m3fn

        sd_pruned = {}
        total = len(state_dict)
        for i, key in enumerate(state_dict):
            progress(0.5 + 0.4 * (i / total), desc=f"Converting tensor {i+1}/{total} to FP8 ({fp8_format})...")
            if state_dict[key].dtype in [torch.float16, torch.float32, torch.bfloat16]:
                sd_pruned[key] = state_dict[key].to(fp8_dtype)
            else:
                sd_pruned[key] = state_dict[key]

        base_name = os.path.splitext(os.path.basename(safetensors_path))[0]
        output_path = os.path.join(output_dir, f"{base_name}-fp8-{fp8_format}.safetensors")
        save_file(sd_pruned, output_path, metadata={"format": "pt", "fp8_format": fp8_format, **metadata})
        progress(0.9, desc="Saved FP8 safetensors file.")

        progress(1.0, desc="FP8 conversion complete!")
        return True, f"Model successfully pruned to FP8 ({fp8_format})."

    except Exception as e:
        return False, str(e)

# --- Source download helper ---
def download_safetensors_file(
    source_type,
    repo_url,
    filename,
    hf_token=None,
    modelscope_token=None,
    progress=gr.Progress()
):
    temp_dir = tempfile.mkdtemp()
    try:
        if source_type == "huggingface":
            clean_url = repo_url.strip().rstrip("/")
            if "huggingface.co" not in clean_url:
                raise ValueError("Invalid Hugging Face URL")
            src_repo_id = clean_url.replace("https://huggingface.co/", "")
            safetensors_path = hf_hub_download(
                repo_id=src_repo_id,
                filename=filename,
                cache_dir=temp_dir,
                token=hf_token
            )
        elif source_type == "modelscope":
            if not MODELScope_AVAILABLE:
                raise ImportError("ModelScope not installed. Install with: pip install modelscope")
            clean_url = repo_url.strip().rstrip("/")
            if "modelscope.cn" in clean_url:
                src_repo_id = "/".join(clean_url.split("/")[-2:])
            else:
                src_repo_id = repo_url.strip()
            if modelscope_token:
                os.environ["MODELSCOPE_CACHE"] = temp_dir
                safetensors_path = ms_file_download(
                    model_id=src_repo_id,
                    file_path=filename,
                    token=modelscope_token
                )
            else:
                safetensors_path = ms_file_download(
                    model_id=src_repo_id,
                    file_path=filename
                )
        else:
            raise ValueError("Unknown source type")

        return safetensors_path, temp_dir
    except Exception as e:
        shutil.rmtree(temp_dir, ignore_errors=True)
        raise e

# --- Upload helper ---
def upload_to_target(
    target_type,
    new_repo_id,
    output_dir,
    fp8_format,
    hf_token=None,
    modelscope_token=None,
    private_repo=False,
    progress=gr.Progress()
):
    if target_type == "huggingface":
        if not hf_token:
            raise ValueError("Hugging Face token required")
        api = HfApi(token=hf_token)
        api.create_repo(
            repo_id=new_repo_id,
            private=private_repo,
            repo_type="model",
            exist_ok=True
        )
        api.upload_folder(
            repo_id=new_repo_id,
            folder_path=output_dir,
            repo_type="model",
            token=hf_token,
            commit_message=f"Upload FP8 ({fp8_format}) model"
        )
        return f"https://huggingface.co/{new_repo_id}"

    elif target_type == "modelscope":
        if not MODELScope_AVAILABLE:
            raise ImportError("ModelScope not installed")
        api = ModelScopeApi()
        if modelscope_token:
            api.login(modelscope_token)
        # ModelScope requires model_type and license
        api.push_model(
            model_id=new_repo_id,
            model_dir=output_dir,
            commit_message=f"Upload FP8 ({fp8_format}) model"
        )
        return f"https://modelscope.cn/models/{new_repo_id}"

    else:
        raise ValueError("Unknown target type")

# --- Main Processing Function ---
def process_and_upload_fp8(
    source_type,
    repo_url,
    safetensors_filename,
    fp8_format,
    target_type,
    new_repo_id,
    hf_token,
    modelscope_token,
    private_repo,
    progress=gr.Progress()
):
    required_fields = [repo_url, safetensors_filename, new_repo_id]
    if source_type == "huggingface":
        required_fields.append(hf_token)
    if target_type == "huggingface":
        required_fields.append(hf_token)
    if target_type == "modelscope" and modelscope_token:
        required_fields.append(modelscope_token)

    if not all(required_fields):
        return None, "❌ Error: Please fill in all required fields.", ""

    if not re.match(r"^[a-zA-Z0-9._-]+/[a-zA-Z0-9._-]+$", new_repo_id):
        return None, "❌ Invalid repository ID format. Use 'username/model-name'.", ""

    temp_dir = None
    output_dir = tempfile.mkdtemp()

    try:
        # Authenticate & download
        progress(0.05, desc="Authenticating and downloading...")
        safetensors_path, temp_dir = download_safetensors_file(
            source_type=source_type,
            repo_url=repo_url,
            filename=safetensors_filename,
            hf_token=hf_token,
            modelscope_token=modelscope_token,
            progress=progress
        )
        progress(0.25, desc="Download complete.")

        # Convert
        success, msg = convert_safetensors_to_fp8(safetensors_path, output_dir, fp8_format, progress)
        if not success:
            return None, f"❌ Conversion failed: {msg}", ""

        # Upload
        progress(0.92, desc="Uploading model...")
        repo_url_final = upload_to_target(
            target_type=target_type,
            new_repo_id=new_repo_id,
            output_dir=output_dir,
            fp8_format=fp8_format,
            hf_token=hf_token,
            modelscope_token=modelscope_token,
            private_repo=private_repo,
            progress=progress
        )

        # README
        base_name = os.path.splitext(safetensors_filename)[0]
        fp8_filename = f"{base_name}-fp8-{fp8_format}.safetensors"
        readme = f"""---
library_name: diffusers
tags:
- fp8
- safetensors
- pruned
- diffusion
- converted-by-gradio
- fp8-{fp8_format}
---

# FP8 Pruned Model ({fp8_format.upper()})

Converted from: `{repo_url}`  
File: `{safetensors_filename}` β†’ `{fp8_filename}`

Quantization: **FP8 ({fp8_format.upper()})**  
Converted on: {datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S')}

> ⚠️ Requires PyTorch β‰₯ 2.1 and compatible hardware for FP8 acceleration.
"""
        readme_path = os.path.join(output_dir, "README.md")
        with open(readme_path, "w") as f:
            f.write(readme)

        # Re-upload README if needed (for ModelScope, already included; for HF, upload separately)
        if target_type == "huggingface":
            HfApi(token=hf_token).upload_file(
                path_or_fileobj=readme_path,
                path_in_repo="README.md",
                repo_id=new_repo_id,
                repo_type="model",
                token=hf_token
            )

        progress(1.0, desc="βœ… Done!")
        result_html = f"""
βœ… Success!  
Your FP8 model is uploaded to: <a href="{repo_url_final}" target="_blank">{new_repo_id}</a>  
Source: {source_type.title()} β†’ Target: {target_type.title()}
"""
        return gr.HTML(result_html), "βœ… FP8 conversion and upload successful!", ""

    except Exception as e:
        return None, f"❌ Error: {str(e)}", ""
    finally:
        if temp_dir:
            shutil.rmtree(temp_dir, ignore_errors=True)
        shutil.rmtree(output_dir, ignore_errors=True)

# --- Gradio UI ---
with gr.Blocks(title="Safetensors β†’ FP8 Pruner (HF + ModelScope)") as demo:
    gr.Markdown("# πŸ”„ Safetensors to FP8 Pruner")
    gr.Markdown("Convert `.safetensors` models to **FP8** and upload to **Hugging Face** or **ModelScope**.")

    with gr.Row():
        with gr.Column():
            source_type = gr.Radio(
                choices=["huggingface", "modelscope"],
                value="huggingface",
                label="Source Platform"
            )
            repo_url = gr.Textbox(
                label="Source Repository URL",
                placeholder="e.g., https://huggingface.co/Yabo/FramePainter OR your-modelscope-id",
                info="Hugging Face URL or ModelScope model ID"
            )
            safetensors_filename = gr.Textbox(
                label="Safetensors Filename",
                placeholder="unet_diffusion_pytorch_model.safetensors"
            )
            fp8_format = gr.Radio(
                choices=["e4m3fn", "e5m2"],
                value="e5m2",
                label="FP8 Format",
                info="E5M2: wider range; E4M3FN: better near-zero precision"
            )
            hf_token = gr.Textbox(
                label="Hugging Face Token (if using HF)",
                type="password"
            )
            modelscope_token = gr.Textbox(
                label="ModelScope Token (optional)",
                type="password",
                visible=MODELScope_AVAILABLE
            )
        with gr.Column():
            target_type = gr.Radio(
                choices=["huggingface", "modelscope"],
                value="huggingface",
                label="Target Platform"
            )
            new_repo_id = gr.Textbox(
                label="New Repository ID",
                placeholder="your-username/my-model-fp8"
            )
            private_repo = gr.Checkbox(label="Make Private (HF only)", value=False)

    convert_btn = gr.Button("πŸš€ Convert & Upload", variant="primary")

    with gr.Row():
        status_output = gr.Markdown()
        repo_link_output = gr.HTML()

    convert_btn.click(
        fn=process_and_upload_fp8,
        inputs=[
            source_type,
            repo_url,
            safetensors_filename,
            fp8_format,
            target_type,
            new_repo_id,
            hf_token,
            modelscope_token,
            private_repo
        ],
        outputs=[repo_link_output, status_output],
        show_progress=True
    )

    gr.Examples(
        examples=[
            ["huggingface", "https://huggingface.co/Yabo/FramePainter", "unet_diffusion_pytorch_model.safetensors", "e5m2", "huggingface"]
        ],
        inputs=[source_type, repo_url, safetensors_filename, fp8_format, target_type]
    )

demo.launch()