File size: 24,278 Bytes
7f615fd
 
 
 
 
 
 
 
 
 
 
fdd626d
6bcc1a3
 
0d6c60b
 
 
 
 
 
 
fdd626d
6bcc1a3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fdd626d
7f615fd
 
 
 
 
 
 
6bcc1a3
7f615fd
1b040ff
6bcc1a3
7f615fd
1b040ff
6bcc1a3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7f615fd
 
0d6c60b
7f615fd
6bcc1a3
1b040ff
fdd626d
6bcc1a3
 
 
 
 
 
 
 
 
7f615fd
fdd626d
6bcc1a3
7f615fd
6bcc1a3
1b040ff
6bcc1a3
 
1b040ff
 
 
6bcc1a3
 
 
 
 
 
 
fdd626d
6bcc1a3
 
 
 
 
 
 
 
 
 
 
 
fdd626d
 
 
 
6bcc1a3
 
 
 
 
 
 
 
 
 
 
7f615fd
1b040ff
6bcc1a3
 
7f615fd
1b040ff
6bcc1a3
 
1b040ff
6bcc1a3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fdd626d
 
6bcc1a3
 
 
 
 
7f615fd
 
6bcc1a3
 
 
7f615fd
7153add
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1b040ff
0d6c60b
 
 
7153add
0d6c60b
7153add
0d6c60b
7153add
0d6c60b
7153add
 
0d6c60b
 
 
1b040ff
 
 
0d6c60b
1b040ff
0d6c60b
 
 
 
 
6bcc1a3
0d6c60b
 
1b040ff
 
0d6c60b
 
 
 
 
1b040ff
0d6c60b
 
1b040ff
0d6c60b
 
 
 
 
 
fdd626d
6bcc1a3
0d6c60b
 
 
 
 
 
 
7f615fd
1b040ff
 
 
 
 
6bcc1a3
 
 
 
 
0d6c60b
7f615fd
 
1b040ff
0d6c60b
1b040ff
7f615fd
6bcc1a3
 
 
 
fdd626d
6bcc1a3
7f615fd
 
6bcc1a3
1b040ff
0d6c60b
6bcc1a3
7f615fd
6bcc1a3
7f615fd
6bcc1a3
 
 
7f615fd
 
 
 
 
fdd626d
 
7f615fd
6bcc1a3
 
7f615fd
fdd626d
1b040ff
 
 
fdd626d
6bcc1a3
fdd626d
6bcc1a3
1b040ff
6bcc1a3
 
 
 
 
 
 
 
 
 
1b040ff
 
 
fdd626d
1b040ff
fdd626d
6bcc1a3
fdd626d
7f615fd
fdd626d
 
1b040ff
6bcc1a3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1b040ff
fdd626d
1b040ff
7f615fd
6bcc1a3
7f615fd
6bcc1a3
1b040ff
7f615fd
6bcc1a3
0d6c60b
 
1b040ff
0d6c60b
 
 
 
 
6bcc1a3
7f615fd
 
 
1b040ff
6bcc1a3
 
 
7f615fd
6bcc1a3
 
 
 
7f615fd
6bcc1a3
 
 
 
7f615fd
0d6c60b
 
7f615fd
 
fdd626d
6bcc1a3
 
 
7f615fd
 
1b040ff
 
 
6bcc1a3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7f615fd
1b040ff
6bcc1a3
 
 
 
 
 
7f615fd
1b040ff
6bcc1a3
7f615fd
 
0d6c60b
 
 
 
 
fdd626d
6bcc1a3
0d6c60b
 
 
 
 
 
6bcc1a3
7f615fd
 
6bcc1a3
7f615fd
 
6bcc1a3
 
 
7f615fd
6bcc1a3
 
7f615fd
6bcc1a3
 
 
 
 
 
 
 
 
 
 
 
7f615fd
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
import gradio as gr
import os
import tempfile
import shutil
import re
import json
import datetime
from pathlib import Path
from huggingface_hub import HfApi, hf_hub_download
from safetensors.torch import load_file, save_file
import torch
import torch.nn.functional as F
import traceback
import math
try:
    from modelscope.hub.file_download import model_file_download as ms_file_download
    from modelscope.hub.api import HubApi as ModelScopeApi
    MODELScope_AVAILABLE = True
except ImportError:
    MODELScope_AVAILABLE = False

def low_rank_decomposition(weight, rank=64):
    """Handle both 2D and 4D tensors for LoRA decomposition."""
    original_shape = weight.shape
    original_dtype = weight.dtype
    
    try:
        # Handle 2D tensors (linear layers, attention)
        if weight.ndim == 2:
            U, S, Vh = torch.linalg.svd(weight.float(), full_matrices=False)
            if rank > len(S):
                rank = len(S) // 2  # Use half the available rank if requested rank is too high
            U = U[:, :rank] @ torch.diag(torch.sqrt(S[:rank]))
            Vh = torch.diag(torch.sqrt(S[:rank])) @ Vh[:rank, :]
            return U.contiguous(), Vh.contiguous()
        
        # Handle 4D tensors (convolutional layers)
        elif weight.ndim == 4:
            # Strategy 1: Reshape to 2D and decompose
            out_ch, in_ch, kH, kW = weight.shape
            
            # For small conv kernels, use spatial decomposition
            if kH * kW <= 9:  # 3x3 kernel or smaller
                weight_2d = weight.permute(0, 2, 3, 1).reshape(out_ch * kH * kW, in_ch)
                U, S, Vh = torch.linalg.svd(weight_2d.float(), full_matrices=False)
                
                if rank > len(S):
                    rank = max(8, len(S) // 2)
                
                U = U[:, :rank] @ torch.diag(torch.sqrt(S[:rank]))
                Vh = torch.diag(torch.sqrt(S[:rank])) @ Vh[:rank, :]
                
                # Reshape back to convolutional format
                U = U.view(out_ch, kH, kW, rank).permute(0, 3, 1, 2).contiguous()
                Vh = Vh.view(rank, in_ch, 1, 1).contiguous()
                return U, Vh
            
            # For larger kernels, use channel-wise decomposition
            else:
                weight_2d = weight.view(out_ch, -1)
                U, S, Vh = torch.linalg.svd(weight_2d.float(), full_matrices=False)
                
                if rank > len(S):
                    rank = max(8, len(S) // 2)
                
                U = U[:, :rank] @ torch.diag(torch.sqrt(S[:rank]))
                Vh = torch.diag(torch.sqrt(S[:rank])) @ Vh[:rank, :]
                U = U.view(out_ch, rank, 1, 1).contiguous()
                Vh = Vh.view(rank, in_ch, kH, kW).contiguous()
                return U, Vh
        
        # Handle 3D tensors (rare, but sometimes in attention mechanisms)
        elif weight.ndim == 3:
            out_ch, mid_ch, in_ch = weight.shape
            weight_2d = weight.reshape(out_ch * mid_ch, in_ch)
            U, S, Vh = torch.linalg.svd(weight_2d.float(), full_matrices=False)
            
            if rank > len(S):
                rank = max(8, len(S) // 2)
            
            U = U[:, :rank] @ torch.diag(torch.sqrt(S[:rank]))
            Vh = torch.diag(torch.sqrt(S[:rank])) @ Vh[:rank, :]
            U = U.view(out_ch, mid_ch, rank).contiguous()
            Vh = Vh.view(rank, in_ch).contiguous()
            return U, Vh
            
    except Exception as e:
        print(f"Decomposition error for tensor with shape {original_shape}: {str(e)}")
        traceback.print_exc()
    
    return None, None

def should_apply_lora(key, weight, architecture, lora_rank):
    """Determine if LoRA should be applied to a specific weight based on architecture selection."""
    
    # Skip bias terms, batchnorm, and very small tensors
    if 'bias' in key or 'norm' in key.lower() or 'bn' in key.lower():
        return False
    
    # Skip very small tensors
    if weight.numel() < 100:
        return False
    
    # Architecture-specific rules
    lower_key = key.lower()
    
    if architecture == "text_encoder":
        # Text encoder: focus on embeddings and attention layers
        return ('emb' in lower_key or 'embed' in lower_key or 
                'attn' in lower_key or 'qkv' in lower_key or 'mlp' in lower_key)
    
    elif architecture == "unet_transformer":
        # UNet transformers: focus on attention blocks
        return ('attn' in lower_key or 'transformer' in lower_key or 
                'qkv' in lower_key or 'to_out' in lower_key)
    
    elif architecture == "unet_conv":
        # UNet convolutional layers
        return ('conv' in lower_key or 'resnet' in lower_key or 
                'downsample' in lower_key or 'upsample' in lower_key)
    
    elif architecture == "vae":
        # VAE components
        return ('encoder' in lower_key or 'decoder' in lower_key or 
                'conv' in lower_key or 'post_quant' in lower_key)
    
    elif architecture == "all":
        # Apply to all eligible tensors
        return True
    
    elif architecture == "auto":
        # Auto-detect based on tensor properties
        if weight.ndim == 2 and min(weight.shape) > lora_rank:
            return True
        if weight.ndim == 4 and (weight.shape[0] > lora_rank or weight.shape[1] > lora_rank):
            return True
        return False
    
    return False

def convert_safetensors_to_fp8_with_lora(safetensors_path, output_dir, fp8_format, lora_rank=64, architecture="auto", progress=gr.Progress()):
    progress(0.1, desc="Starting FP8 conversion with LoRA extraction...")
    try:
        def read_safetensors_metadata(path):
            with open(path, 'rb') as f:
                header_size = int.from_bytes(f.read(8), 'little')
                header_json = f.read(header_size).decode('utf-8')
                header = json.loads(header_json)
                return header.get('__metadata__', {})
        
        metadata = read_safetensors_metadata(safetensors_path)
        progress(0.2, desc="Loaded metadata.")
        
        state_dict = load_file(safetensors_path)
        progress(0.4, desc="Loaded weights.")
        
        # Architecture analysis
        architecture_stats = {
            'text_encoder': 0,
            'unet_transformer': 0,
            'unet_conv': 0,
            'vae': 0,
            'other': 0
        }
        
        for key in state_dict:
            lower_key = key.lower()
            if 'text' in lower_key or 'emb' in lower_key:
                architecture_stats['text_encoder'] += 1
            elif 'attn' in lower_key or 'transformer' in lower_key:
                architecture_stats['unet_transformer'] += 1
            elif 'conv' in lower_key or 'resnet' in lower_key:
                architecture_stats['unet_conv'] += 1
            elif 'vae' in lower_key or 'encoder' in lower_key or 'decoder' in lower_key:
                architecture_stats['vae'] += 1
            else:
                architecture_stats['other'] += 1
        
        print("Architecture analysis:")
        for arch, count in architecture_stats.items():
            print(f"- {arch}: {count} layers")
        
        if fp8_format == "e5m2":
            fp8_dtype = torch.float8_e5m2
        else:
            fp8_dtype = torch.float8_e4m3fn
        
        sd_fp8 = {}
        lora_weights = {}
        lora_stats = {
            'total_layers': len(state_dict),
            'layers_analyzed': 0,
            'layers_eligible': 0,
            'layers_processed': 0,
            'layers_skipped': [],
            'architecture_distro': architecture_stats
        }
        
        total = len(state_dict)
        lora_keys = []
        
        for i, key in enumerate(state_dict):
            progress(0.4 + 0.4 * (i / total), desc=f"Processing {i+1}/{total}: {key.split('.')[-1]}")
            weight = state_dict[key]
            lora_stats['layers_analyzed'] += 1
            
            if weight.dtype in [torch.float16, torch.float32, torch.bfloat16]:
                fp8_weight = weight.to(fp8_dtype)
                sd_fp8[key] = fp8_weight
                
                # Determine if we should apply LoRA
                eligible_for_lora = should_apply_lora(key, weight, architecture, lora_rank)
                
                if eligible_for_lora:
                    lora_stats['layers_eligible'] += 1
                    
                    try:
                        # Adjust rank based on tensor size
                        actual_rank = lora_rank
                        if weight.ndim == 2:
                            actual_rank = min(lora_rank, min(weight.shape) // 2)
                        elif weight.ndim == 4:
                            actual_rank = min(lora_rank, max(weight.shape[0], weight.shape[1]) // 4)
                        
                        if actual_rank < 4:  # Minimum rank threshold
                            lora_stats['layers_skipped'].append(f"{key}: rank too small ({actual_rank})")
                            continue
                        
                        U, V = low_rank_decomposition(weight, rank=actual_rank)
                        if U is not None and V is not None:
                            lora_weights[f"lora_A.{key}"] = U.to(torch.float16)
                            lora_weights[f"lora_B.{key}"] = V.to(torch.float16)
                            lora_keys.append(key)
                            lora_stats['layers_processed'] += 1
                        else:
                            lora_stats['layers_skipped'].append(f"{key}: decomposition returned None")
                    except Exception as e:
                        error_msg = f"{key}: {str(e)}"
                        lora_stats['layers_skipped'].append(error_msg)
                        print(f"LoRA decomposition error: {error_msg}")
                        traceback.print_exc()
                else:
                    reason = "not eligible for selected architecture" if architecture != "auto" else f"ndim={weight.ndim}, min(shape)={min(weight.shape) if weight.ndim > 0 else 'N/A'}"
                    lora_stats['layers_skipped'].append(f"{key}: {reason}")
            else:
                sd_fp8[key] = weight
                lora_stats['layers_skipped'].append(f"{key}: unsupported dtype {weight.dtype}")
        
        base_name = os.path.splitext(os.path.basename(safetensors_path))[0]
        fp8_path = os.path.join(output_dir, f"{base_name}-fp8-{fp8_format}.safetensors")
        lora_path = os.path.join(output_dir, f"{base_name}-lora-r{lora_rank}-{architecture}.safetensors")
        
        save_file(sd_fp8, fp8_path, metadata={"format": "pt", "fp8_format": fp8_format, **metadata})
        
        # Always save LoRA file, even if empty
        lora_metadata = {
            "format": "pt", 
            "lora_rank": str(lora_rank),
            "architecture": architecture,
            "stats": json.dumps(lora_stats)
        }
        
        save_file(lora_weights, lora_path, metadata=lora_metadata)
        
        # Generate detailed statistics message
        stats_msg = f"""
πŸ“Š LoRA Extraction Statistics:
- Total layers analyzed: {lora_stats['layers_analyzed']}
- Layers eligible for LoRA: {lora_stats['layers_eligible']}
- Successfully processed: {lora_stats['layers_processed']}
- Architecture: {architecture}
- FP8 Format: {fp8_format.upper()}

Top skipped layers:
{chr(10).join(lora_stats['layers_skipped'][:10])}
"""
        
        progress(0.9, desc="Saved FP8 and LoRA files.")
        progress(1.0, desc="βœ… FP8 + LoRA extraction complete!")
        
        if lora_stats['layers_processed'] == 0:
            stats_msg += "\n\n⚠️ WARNING: No LoRA weights were generated. Try a different architecture selection or lower rank."
        
        return True, f"FP8 ({fp8_format}) and rank-{lora_rank} LoRA saved.\n{stats_msg}", lora_stats

    except Exception as e:
        error_msg = f"Conversion error: {str(e)}\n{traceback.format_exc()}"
        print(error_msg)
        return False, error_msg, None

def parse_hf_url(url):
    url = url.strip().rstrip("/")
    if not url.startswith("https://huggingface.co/"):
        raise ValueError("URL must start with https://huggingface.co/")
    path = url.replace("https://huggingface.co/", "")
    parts = path.split("/")
    if len(parts) < 2:
        raise ValueError("Invalid repo format")
    repo_id = "/".join(parts[:2])
    subfolder = ""
    if len(parts) > 3 and parts[2] == "tree":
        subfolder = "/".join(parts[4:]) if len(parts) > 4 else ""
    elif len(parts) > 2:
        subfolder = "/".join(parts[2:])
    return repo_id, subfolder

def download_safetensors_file(source_type, repo_url, filename, hf_token=None, progress=gr.Progress()):
    temp_dir = tempfile.mkdtemp()
    try:
        if source_type == "huggingface":
            repo_id, subfolder = parse_hf_url(repo_url)
            safetensors_path = hf_hub_download(
                repo_id=repo_id,
                filename=filename,
                subfolder=subfolder or None,
                cache_dir=temp_dir,
                token=hf_token,
                resume_download=True
            )
        elif source_type == "modelscope":
            if not MODELScope_AVAILABLE:
                raise ImportError("ModelScope not installed")
            repo_id = repo_url.strip()
            safetensors_path = ms_file_download(model_id=repo_id, file_path=filename)
        else:
            raise ValueError("Unknown source")
        return safetensors_path, temp_dir
    except Exception as e:
        shutil.rmtree(temp_dir, ignore_errors=True)
        raise e

def upload_to_target(target_type, new_repo_id, output_dir, fp8_format, architecture, hf_token=None, modelscope_token=None, private_repo=False):
    if target_type == "huggingface":
        api = HfApi(token=hf_token)
        api.create_repo(repo_id=new_repo_id, private=private_repo, repo_type="model", exist_ok=True)
        api.upload_folder(repo_id=new_repo_id, folder_path=output_dir, repo_type="model", token=hf_token)
        return f"https://huggingface.co/{new_repo_id}"
    elif target_type == "modelscope":
        api = ModelScopeApi()
        if modelscope_token:
            api.login(modelscope_token)
        api.push_model(model_id=new_repo_id, model_dir=output_dir)
        return f"https://modelscope.cn/models/{new_repo_id}"
    else:
        raise ValueError("Unknown target")

def process_and_upload_fp8(
    source_type,
    repo_url,
    safetensors_filename,
    fp8_format,
    lora_rank,
    architecture,
    target_type,
    new_repo_id,
    hf_token,
    modelscope_token,
    private_repo,
    progress=gr.Progress()
):
    if not re.match(r"^[a-zA-Z0-9._-]+/[a-zA-Z0-9._-]+$", new_repo_id):
        return None, "❌ Invalid repo ID format. Use 'username/model-name'.", ""
    if source_type == "huggingface" and not hf_token:
        return None, "❌ Hugging Face token required for source.", ""
    if target_type == "huggingface" and not hf_token:
        return None, "❌ Hugging Face token required for target.", ""
    
    # Validate lora_rank
    if lora_rank < 4:
        return None, "❌ LoRA rank must be at least 4.", ""
    
    temp_dir = None
    output_dir = tempfile.mkdtemp()
    try:
        progress(0.05, desc="Downloading model...")
        safetensors_path, temp_dir = download_safetensors_file(
            source_type, repo_url, safetensors_filename, hf_token, progress
        )
        
        progress(0.25, desc=f"Converting to FP8 with LoRA ({architecture})...")
        success, msg, stats = convert_safetensors_to_fp8_with_lora(
            safetensors_path, output_dir, fp8_format, lora_rank, architecture, progress
        )
        
        if not success:
            return None, f"❌ Conversion failed: {msg}", ""
        
        progress(0.9, desc="Uploading...")
        repo_url_final = upload_to_target(
            target_type, new_repo_id, output_dir, fp8_format, architecture, hf_token, modelscope_token, private_repo
        )
        
        base_name = os.path.splitext(safetensors_filename)[0]
        lora_filename = f"{base_name}-lora-r{lora_rank}-{architecture}.safetensors"
        fp8_filename = f"{base_name}-fp8-{fp8_format}.safetensors"
        
        readme = f"""---
library_name: diffusers
tags:
- fp8
- safetensors
- lora
- low-rank
- diffusion
- architecture-{architecture}
- converted-by-ai-toolkit
---
# FP8 Model with Low-Rank LoRA
- **Source**: `{repo_url}`
- **File**: `{safetensors_filename}`
- **FP8 Format**: `{fp8_format.upper()}`
- **LoRA Rank**: {lora_rank}
- **Architecture Target**: {architecture}
- **LoRA File**: `{lora_filename}`
- **FP8 File**: `{fp8_filename}`

## Architecture Distribution
"""
        
        # Add architecture stats to README if available
        if stats and 'architecture_distro' in stats:
            readme += "\n| Component | Layer Count |\n|-----------|------------|\n"
            for arch, count in stats['architecture_distro'].items():
                readme += f"| {arch.replace('_', ' ').title()} | {count} |\n"
        
        readme += f"""
## Usage (Inference)
```python
from safetensors.torch import load_file
import torch

# Load FP8 model
fp8_state = load_file("{fp8_filename}")
lora_state = load_file("{lora_filename}")

# Reconstruct approximate original weights
reconstructed = {{}}
for key in fp8_state:
    lora_a_key = f"lora_A.{{key}}"
    lora_b_key = f"lora_B.{{key}}"
    
    if lora_a_key in lora_state and lora_b_key in lora_state:
        A = lora_state[lora_a_key].to(torch.float32)
        B = lora_state[lora_b_key].to(torch.float32)
        
        # Handle different tensor dimensions
        if A.ndim == 2 and B.ndim == 2:
            lora_weight = B @ A
        elif A.ndim == 4 and B.ndim == 4:
            # For convolutional LoRA
            lora_weight = F.conv2d(fp8_state[key].to(torch.float32), 
                                  B, padding=1) + F.conv2d(fp8_state[key].to(torch.float32), 
                                  A, padding=1)
        else:
            # Fallback for mixed dimension cases
            lora_weight = B @ A.view(B.shape[1], -1)
            if lora_weight.shape != fp8_state[key].shape:
                lora_weight = lora_weight.view_as(fp8_state[key])
        
        reconstructed[key] = fp8_state[key].to(torch.float32) + lora_weight
    else:
        reconstructed[key] = fp8_state[key].to(torch.float32)
```

> **Note**: Requires PyTorch β‰₯ 2.1 for FP8 support. For best results, use the same architecture selection ({architecture}) during inference as was used during extraction.
"""
        
        with open(os.path.join(output_dir, "README.md"), "w") as f:
            f.write(readme)
        
        if target_type == "huggingface":
            HfApi(token=hf_token).upload_file(
                path_or_fileobj=os.path.join(output_dir, "README.md"),
                path_in_repo="README.md",
                repo_id=new_repo_id,
                repo_type="model",
                token=hf_token
            )
        
        progress(1.0, desc="βœ… Done!")
        result_html = f"""
βœ… Success!  
Model uploaded to: <a href="{repo_url_final}" target="_blank">{new_repo_id}</a>  
Includes: 
- FP8 model: `{fp8_filename}`
- LoRA weights: `{lora_filename}` (rank {lora_rank}, architecture: {architecture})

πŸ“Š Stats: {stats['layers_processed']}/{stats['layers_eligible']} eligible layers processed
"""
        return gr.HTML(result_html), "βœ… FP8 + LoRA upload successful!", msg
    
    except Exception as e:
        error_msg = f"❌ Error: {str(e)}\n{traceback.format_exc()}"
        print(error_msg)
        return None, error_msg, ""
    
    finally:
        if temp_dir:
            shutil.rmtree(temp_dir, ignore_errors=True)
        shutil.rmtree(output_dir, ignore_errors=True)

with gr.Blocks(title="FP8 + LoRA Extractor (HF ↔ ModelScope)") as demo:
    gr.Markdown("# πŸ”„ Advanced FP8 Pruner with Architecture-Specific LoRA Extraction")
    gr.Markdown("Convert `.safetensors` β†’ **FP8** + **targeted LoRA** weights for precision recovery. Supports Hugging Face ↔ ModelScope.")
    
    with gr.Row():
        with gr.Column():
            source_type = gr.Radio(["huggingface", "modelscope"], value="huggingface", label="Source")
            repo_url = gr.Textbox(label="Repo URL or ID", placeholder="https://huggingface.co/... or modelscope-id")
            safetensors_filename = gr.Textbox(label="Filename", placeholder="model.safetensors")
            
            with gr.Accordion("Advanced LoRA Settings", open=True):
                fp8_format = gr.Radio(["e4m3fn", "e5m2"], value="e5m2", label="FP8 Format")
                lora_rank = gr.Slider(minimum=4, maximum=256, step=4, value=64, label="LoRA Rank")
                
                architecture = gr.Dropdown(
                    choices=[
                        ("Auto-detect components", "auto"),
                        ("Text Encoder (embeddings, attention)", "text_encoder"),
                        ("UNet Transformers (attention blocks)", "unet_transformer"),
                        ("UNet Convolutions (resnets, downsampling)", "unet_conv"),
                        ("VAE (encoder/decoder)", "vae"),
                        ("All components", "all")
                    ],
                    value="auto",
                    label="Target Architecture",
                    info="Select which model components to apply LoRA to"
                )
            
            with gr.Accordion("Authentication", open=False):
                hf_token = gr.Textbox(label="Hugging Face Token", type="password")
                modelscope_token = gr.Textbox(label="ModelScope Token (optional)", type="password", visible=MODELScope_AVAILABLE)
        
        with gr.Column():
            target_type = gr.Radio(["huggingface", "modelscope"], value="huggingface", label="Target")
            new_repo_id = gr.Textbox(label="New Repo ID", placeholder="user/model-fp8-lora")
            private_repo = gr.Checkbox(label="Private Repository (HF only)", value=False)
            
            status_output = gr.Markdown()
            detailed_log = gr.Textbox(label="Processing Log", interactive=False, lines=10)
    
    convert_btn = gr.Button("πŸš€ Convert & Upload", variant="primary")
    repo_link_output = gr.HTML()
    
    convert_btn.click(
        fn=process_and_upload_fp8,
        inputs=[
            source_type,
            repo_url,
            safetensors_filename,
            fp8_format,
            lora_rank,
            architecture,
            target_type,
            new_repo_id,
            hf_token,
            modelscope_token,
            private_repo
        ],
        outputs=[repo_link_output, status_output, detailed_log],
        show_progress=True
    )
    
    gr.Examples(
        examples=[
            ["huggingface", "https://huggingface.co/Yabo/FramePainter/tree/main", "unet_diffusion_pytorch_model.safetensors", "e5m2", 64, "unet_transformer"],
            ["huggingface", "https://huggingface.co/stabilityai/sdxl-vae", "diffusion_pytorch_model.safetensors", "e4m3fn", 32, "vae"],
            ["huggingface", "https://huggingface.co/runwayml/stable-diffusion-v1-5/tree/main/text_encoder", "model.safetensors", "e5m2", 48, "text_encoder"]
        ],
        inputs=[source_type, repo_url, safetensors_filename, fp8_format, lora_rank, architecture],
        label="Example Conversions"
    )
    
    gr.Markdown("""
    ## πŸ’‘ Usage Tips
    
    - **For Text Encoders**: Use rank 32-64 with `text_encoder` architecture for optimal results.
    - **For UNet Attention**: Use `unet_transformer` with rank 64-128 for best quality preservation.
    - **For UNet Convolutions**: Use `unet_conv` with lower ranks (16-32) as convolutions compress better.
    - **For VAE**: Use `vae` architecture with rank 16-32.
    - **Auto Mode**: Let the tool analyze and target appropriate layers automatically.
    
    ⚠️ **Note**: Higher ranks produce better quality but larger LoRA files. Start with lower ranks and increase if needed.
    """)

demo.launch()