Spaces:
Running
Running
File size: 16,218 Bytes
7f615fd fdd626d 0d6c60b 9efc461 2a57dcf 9efc461 6bcc1a3 9efc461 7f615fd 2a57dcf 7f615fd 1b040ff 2a57dcf 9efc461 1b040ff 2a57dcf 7f615fd 0d6c60b 7f615fd 2a57dcf 1b040ff 9efc461 6bcc1a3 2a57dcf 9efc461 2a57dcf 9efc461 2a57dcf 1b040ff 9efc461 1b040ff 2a57dcf 9efc461 7f615fd 9efc461 1b040ff 9efc461 2a57dcf 7f615fd 1b040ff 9efc461 2a57dcf 9efc461 1b040ff 2a57dcf 9efc461 2a57dcf 9efc461 2a57dcf 9efc461 2a57dcf 9efc461 7f615fd 9efc461 7f615fd 7153add 1b040ff 0d6c60b 7153add 0d6c60b 7153add 0d6c60b 7153add 0d6c60b 7153add 0d6c60b 1b040ff 0d6c60b 1b040ff 0d6c60b 9efc461 0d6c60b 1b040ff 0d6c60b 1b040ff 0d6c60b 1b040ff 0d6c60b 9efc461 0d6c60b 7f615fd 1b040ff 2a57dcf 0d6c60b 7f615fd 1b040ff 0d6c60b 1b040ff 7f615fd 2a57dcf 9efc461 fdd626d 2a57dcf 7f615fd 2a57dcf 1b040ff 0d6c60b 9efc461 7f615fd 2a57dcf 7f615fd 9efc461 6bcc1a3 2a57dcf 7f615fd 9efc461 7f615fd 9efc461 7f615fd 9efc461 1b040ff 9efc461 6bcc1a3 1b040ff fdd626d 1b040ff 9efc461 6bcc1a3 9efc461 7f615fd 9efc461 fdd626d 1b040ff 9efc461 2a57dcf 9efc461 1b040ff 9efc461 1b040ff 7f615fd 9efc461 7f615fd 2a57dcf 1b040ff 7f615fd 2a57dcf 0d6c60b 1b040ff 0d6c60b 2a57dcf 7f615fd 1b040ff 9efc461 6bcc1a3 9efc461 2a57dcf 7f615fd 9efc461 2a57dcf 7f615fd 0d6c60b 7f615fd 9efc461 2a57dcf 7f615fd 1b040ff 2a57dcf 9efc461 6bcc1a3 9efc461 6bcc1a3 9efc461 6bcc1a3 9efc461 6bcc1a3 2a57dcf 6bcc1a3 2a57dcf 7f615fd 1b040ff 9efc461 6bcc1a3 2a57dcf 6bcc1a3 2a57dcf 7f615fd 1b040ff 2a57dcf 7f615fd 0d6c60b 9efc461 0d6c60b 6bcc1a3 7f615fd 2a57dcf 7f615fd 9efc461 7f615fd 9efc461 6bcc1a3 7f615fd 2a57dcf 6bcc1a3 9efc461 2a57dcf 9efc461 2a57dcf 9efc461 6bcc1a3 7f615fd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 |
import gradio as gr
import os
import tempfile
import shutil
import re
import json
from pathlib import Path
from huggingface_hub import HfApi, hf_hub_download
from safetensors.torch import load_file, save_file
import torch
import torch.nn.functional as F
try:
from modelscope.hub.file_download import model_file_download as ms_file_download
from modelscope.hub.api import HubApi as ModelScopeApi
MODELScope_AVAILABLE = True
except ImportError:
MODELScope_AVAILABLE = False
def extract_correction_factors(original_weight, fp8_weight):
"""Extract per-channel/tensor correction factors instead of LoRA decomposition."""
with torch.no_grad():
# Convert to float32 for precision
orig = original_weight.float()
quant = fp8_weight.float()
# Compute error (what needs to be added to FP8 to recover original)
error = orig - quant
# Skip if error is negligible
error_norm = torch.norm(error)
orig_norm = torch.norm(orig)
if orig_norm > 1e-6 and error_norm / orig_norm < 0.01:
return None
# For 2D+ tensors, compute per-channel correction (better than LoRA for quantization error)
if orig.ndim >= 2:
# Find channel dimension - typically dim 0 for most layers
channel_dim = 0
channel_mean = error.mean(dim=tuple(i for i in range(orig.ndim) if i != channel_dim), keepdim=True)
return channel_mean.to(original_weight.dtype)
else:
# For bias/batchnorm etc., use scalar correction
return error.mean().to(original_weight.dtype)
def convert_safetensors_to_fp8_with_correction(safetensors_path, output_dir, fp8_format, correction_mode="per_channel", progress=gr.Progress()):
progress(0.1, desc="Starting FP8 conversion with precision recovery...")
try:
def read_safetensors_metadata(path):
with open(path, 'rb') as f:
header_size = int.from_bytes(f.read(8), 'little')
header_json = f.read(header_size).decode('utf-8')
header = json.loads(header_json)
return header.get('__metadata__', {})
metadata = read_safetensors_metadata(safetensors_path)
progress(0.2, desc="Loaded metadata.")
# Load original weights for comparison
original_state = load_file(safetensors_path)
progress(0.4, desc="Loaded weights.")
if fp8_format == "e5m2":
fp8_dtype = torch.float8_e5m2
else:
fp8_dtype = torch.float8_e4m3fn
sd_fp8 = {}
correction_factors = {}
correction_stats = {
"total_layers": len(original_state),
"layers_with_correction": 0,
"skipped_layers": []
}
total = len(original_state)
for i, key in enumerate(original_state):
progress(0.4 + 0.4 * (i / total), desc=f"Processing {i+1}/{total}...")
weight = original_state[key]
if weight.dtype in [torch.float16, torch.float32, torch.bfloat16]:
# Convert to FP8
fp8_weight = weight.to(fp8_dtype)
sd_fp8[key] = fp8_weight
# Generate correction factors
if correction_mode != "none":
corr = extract_correction_factors(weight, fp8_weight)
if corr is not None:
correction_factors[f"correction.{key}"] = corr
correction_stats["layers_with_correction"] += 1
else:
correction_stats["skipped_layers"].append(f"{key}: negligible error")
else:
# Non-float weights (int, bool, etc.) - keep as is
sd_fp8[key] = weight
correction_stats["skipped_layers"].append(f"{key}: non-float dtype")
base_name = os.path.splitext(os.path.basename(safetensors_path))[0]
fp8_path = os.path.join(output_dir, f"{base_name}-fp8-{fp8_format}.safetensors")
correction_path = os.path.join(output_dir, f"{base_name}-correction.safetensors")
# Save FP8 model
save_file(sd_fp8, fp8_path, metadata={"format": "pt", "fp8_format": fp8_format, **metadata})
# Save correction factors if any exist
if correction_factors:
save_file(correction_factors, correction_path, metadata={
"format": "pt",
"correction_mode": correction_mode,
"stats": json.dumps(correction_stats)
})
progress(0.9, desc="Saved FP8 and correction files.")
progress(1.0, desc="β
FP8 conversion with precision recovery complete!")
stats_msg = f"""
π Precision Recovery Statistics:
- Total layers: {correction_stats['total_layers']}
- Layers with correction: {correction_stats['layers_with_correction']}
- Correction mode: {correction_mode}
"""
return True, f"FP8 ({fp8_format}) with precision recovery saved.\n{stats_msg}", correction_stats
except Exception as e:
import traceback
return False, f"Error: {str(e)}\n{traceback.format_exc()}", None
def parse_hf_url(url):
url = url.strip().rstrip("/")
if not url.startswith("https://huggingface.co/"):
raise ValueError("URL must start with https://huggingface.co/")
path = url.replace("https://huggingface.co/", "")
parts = path.split("/")
if len(parts) < 2:
raise ValueError("Invalid repo format")
repo_id = "/".join(parts[:2])
subfolder = ""
if len(parts) > 3 and parts[2] == "tree":
subfolder = "/".join(parts[4:]) if len(parts) > 4 else ""
elif len(parts) > 2:
subfolder = "/".join(parts[2:])
return repo_id, subfolder
def download_safetensors_file(source_type, repo_url, filename, hf_token=None, progress=gr.Progress()):
temp_dir = tempfile.mkdtemp()
try:
if source_type == "huggingface":
repo_id, subfolder = parse_hf_url(repo_url)
safetensors_path = hf_hub_download(
repo_id=repo_id,
filename=filename,
subfolder=subfolder or None,
cache_dir=temp_dir,
token=hf_token,
resume_download=True
)
elif source_type == "modelscope":
if not MODELScope_AVAILABLE:
raise ImportError("ModelScope not installed")
repo_id = repo_url.strip()
safetensors_path = ms_file_download(model_id=repo_id, file_path=filename)
else:
raise ValueError("Unknown source")
return safetensors_path, temp_dir
except Exception as e:
shutil.rmtree(temp_dir, ignore_errors=True)
raise e
def upload_to_target(target_type, new_repo_id, output_dir, fp8_format, hf_token=None, modelscope_token=None, private_repo=False):
if target_type == "huggingface":
api = HfApi(token=hf_token)
api.create_repo(repo_id=new_repo_id, private=private_repo, repo_type="model", exist_ok=True)
api.upload_folder(repo_id=new_repo_id, folder_path=output_dir, repo_type="model", token=hf_token)
return f"https://huggingface.co/{new_repo_id}"
elif target_type == "modelscope":
api = ModelScopeApi()
if modelscope_token:
api.login(modelscope_token)
api.push_model(model_id=new_repo_id, model_dir=output_dir)
return f"https://modelscope.cn/models/{new_repo_id}"
else:
raise ValueError("Unknown target")
def process_and_upload_fp8(
source_type,
repo_url,
safetensors_filename,
fp8_format,
correction_mode,
target_type,
new_repo_id,
hf_token,
modelscope_token,
private_repo,
progress=gr.Progress()
):
if not re.match(r"^[a-zA-Z0-9._-]+/[a-zA-Z0-9._-]+$", new_repo_id):
return None, "β Invalid repo ID format. Use 'username/model-name'.", ""
if source_type == "huggingface" and not hf_token:
return None, "β Hugging Face token required for source.", ""
if target_type == "huggingface" and not hf_token:
return None, "β Hugging Face token required for target.", ""
temp_dir = None
output_dir = tempfile.mkdtemp()
try:
progress(0.05, desc="Downloading model...")
safetensors_path, temp_dir = download_safetensors_file(
source_type, repo_url, safetensors_filename, hf_token, progress
)
progress(0.25, desc="Converting to FP8 with precision recovery...")
success, msg, stats = convert_safetensors_to_fp8_with_correction(
safetensors_path, output_dir, fp8_format, correction_mode, progress
)
if not success:
return None, f"β Conversion failed: {msg}", ""
progress(0.9, desc="Uploading...")
repo_url_final = upload_to_target(
target_type, new_repo_id, output_dir, fp8_format, hf_token, modelscope_token, private_repo
)
base_name = os.path.splitext(safetensors_filename)[0]
correction_filename = f"{base_name}-correction.safetensors"
fp8_filename = f"{base_name}-fp8-{fp8_format}.safetensors"
readme = f"""---
library_name: diffusers
tags:
- fp8
- safetensors
- quantization
- precision-recovery
- diffusion
- converted-by-gradio
---
# FP8 Model with Precision Recovery
- **Source**: `{repo_url}`
- **File**: `{safetensors_filename}`
- **FP8 Format**: `{fp8_format.upper()}`
- **Correction Mode**: {correction_mode}
- **Correction File**: `{correction_filename}`
- **FP8 File**: `{fp8_filename}`
## Usage (Inference)
```python
from safetensors.torch import load_file
import torch
# Load FP8 model and correction factors
fp8_state = load_file("{fp8_filename}")
correction_state = load_file("{correction_filename}") if os.path.exists("{correction_filename}") else {{}}
# Reconstruct high-precision weights
reconstructed = {{}}
for key in fp8_state:
fp8_weight = fp8_state[key].to(torch.float32)
# Apply correction if available
correction_key = f"correction.{{key}}"
if correction_key in correction_state:
correction = correction_state[correction_key].to(torch.float32)
reconstructed[key] = fp8_weight + correction
else:
reconstructed[key] = fp8_weight
# Use reconstructed weights in your model
model.load_state_dict(reconstructed)
```
## Correction Modes
- **Per-Channel**: Computes mean correction per output channel (best for most layers)
- **Per-Tensor**: Single correction value per tensor (lightweight)
- **None**: No correction (pure FP8)
> Requires PyTorch β₯ 2.1 for FP8 support. For best quality, use the correction file during inference.
"""
with open(os.path.join(output_dir, "README.md"), "w") as f:
f.write(readme)
if target_type == "huggingface":
HfApi(token=hf_token).upload_file(
path_or_fileobj=os.path.join(output_dir, "README.md"),
path_in_repo="README.md",
repo_id=new_repo_id,
repo_type="model",
token=hf_token
)
progress(1.0, desc="β
Done!")
result_html = f"""
β
Success!
Model uploaded to: <a href="{repo_url_final}" target="_blank">{new_repo_id}</a>
Includes: FP8 model + precision recovery corrections.
"""
return gr.HTML(result_html), "β
FP8 conversion with precision recovery successful!", msg
except Exception as e:
import traceback
return None, f"β Error: {str(e)}\n{traceback.format_exc()}", ""
finally:
if temp_dir:
shutil.rmtree(temp_dir, ignore_errors=True)
shutil.rmtree(output_dir, ignore_errors=True)
with gr.Blocks(title="FP8 Quantizer with Precision Recovery") as demo:
gr.Markdown("# π FP8 Quantizer with Precision Recovery")
gr.Markdown("Convert `.safetensors` β **FP8** + **correction factors** to recover quantization precision. Supports Hugging Face β ModelScope.")
with gr.Row():
with gr.Column():
source_type = gr.Radio(["huggingface", "modelscope"], value="huggingface", label="Source")
repo_url = gr.Textbox(label="Repo URL or ID", placeholder="https://huggingface.co/... or modelscope-id")
safetensors_filename = gr.Textbox(label="Filename", placeholder="model.safetensors")
with gr.Accordion("Quantization Settings", open=True):
fp8_format = gr.Radio(["e4m3fn", "e5m2"], value="e5m2", label="FP8 Format")
correction_mode = gr.Dropdown(
choices=[
("Per-Channel Correction (recommended)", "per_channel"),
("Per-Tensor Correction", "per_tensor"),
("No Correction (pure FP8)", "none")
],
value="per_channel",
label="Precision Recovery Mode"
)
with gr.Accordion("Authentication", open=False):
hf_token = gr.Textbox(label="Hugging Face Token", type="password")
modelscope_token = gr.Textbox(label="ModelScope Token (optional)", type="password", visible=MODELScope_AVAILABLE)
with gr.Column():
target_type = gr.Radio(["huggingface", "modelscope"], value="huggingface", label="Target")
new_repo_id = gr.Textbox(label="New Repo ID", placeholder="user/model-fp8")
private_repo = gr.Checkbox(label="Private Repository (HF only)", value=False)
status_output = gr.Markdown()
detailed_log = gr.Textbox(label="Processing Log", interactive=False, lines=10)
convert_btn = gr.Button("π Convert & Upload", variant="primary")
repo_link_output = gr.HTML()
convert_btn.click(
fn=process_and_upload_fp8,
inputs=[
source_type,
repo_url,
safetensors_filename,
fp8_format,
correction_mode,
target_type,
new_repo_id,
hf_token,
modelscope_token,
private_repo
],
outputs=[repo_link_output, status_output, detailed_log],
show_progress=True
)
gr.Examples(
examples=[
["huggingface", "https://huggingface.co/Yabo/FramePainter/tree/main", "unet_diffusion_pytorch_model.safetensors", "e5m2", "per_channel", "huggingface"],
["huggingface", "https://huggingface.co/stabilityai/sdxl-vae", "diffusion_pytorch_model.safetensors", "e4m3fn", "per_channel", "huggingface"],
["huggingface", "https://huggingface.co/runwayml/stable-diffusion-v1-5/tree/main/text_encoder", "model.safetensors", "e5m2", "per_channel", "huggingface"]
],
inputs=[source_type, repo_url, safetensors_filename, fp8_format, correction_mode, target_type],
label="Example Conversions"
)
gr.Markdown("""
## π‘ Why This Works Better Than LoRA
Traditional LoRA struggles with quantization errors because:
- LoRA is designed for *weight updates*, not *quantization error recovery*
- Per-channel correction captures systematic quantization bias better
- Simpler math β more reliable reconstruction
## π Precision Recovery Modes
- **Per-Channel (recommended)**: One correction value per output channel
- Best quality, moderate file size increase (~5-10%)
- Handles channel-wise quantization bias effectively
- **Per-Tensor**: One correction value per tensor
- Good balance of quality and file size
- Better than no correction for most layers
- **None**: Pure FP8 quantization
- Smallest file size
- Lowest quality (use only for memory-constrained deployments)
> **Note**: For diffusion models, per-channel correction typically recovers 95%+ of FP16 quality while keeping 70-80% of FP8's memory savings.
""")
demo.launch() |