new03 / app.py
codemichaeld's picture
Update app.py
2a57dcf verified
raw
history blame
29.5 kB
import gradio as gr
import os
import tempfile
import shutil
import re
import json
import datetime
from pathlib import Path
from huggingface_hub import HfApi, hf_hub_download
from safetensors.torch import load_file, save_file
import torch
import torch.nn.functional as F
import traceback
import math
try:
from modelscope.hub.file_download import model_file_download as ms_file_download
from modelscope.hub.api import HubApi as ModelScopeApi
MODELScope_AVAILABLE = True
except ImportError:
MODELScope_AVAILABLE = False
def low_rank_decomposition(weight, rank=64, approximation_factor=0.8):
"""Low-rank decomposition with controlled approximation error."""
original_shape = weight.shape
original_dtype = weight.dtype
try:
# Handle 2D tensors (linear layers, attention)
if weight.ndim == 2:
# Compute SVD
U, S, Vh = torch.linalg.svd(weight.float(), full_matrices=False)
# Calculate how much variance we want to keep
total_variance = torch.sum(S ** 2)
cumulative_variance = torch.cumsum(S ** 2, dim=0)
# Find minimal rank that preserves approximation_factor of variance
minimal_rank = torch.searchsorted(cumulative_variance, approximation_factor * total_variance).item() + 1
# Use the smaller of: requested rank or minimal rank for approximation_factor
actual_rank = min(rank, len(S))
# If actual_rank is too close to full rank, reduce it to create meaningful approximation
if actual_rank > len(S) * 0.8: # If using more than 80% of full rank
actual_rank = max(min(rank // 2, len(S) // 2), 8) # Use half the requested rank
# Ensure we're actually approximating, not just reparameterizing
if actual_rank >= min(weight.shape):
# Force approximation by using lower rank
actual_rank = max(min(weight.shape) // 4, 8)
U_k = U[:, :actual_rank] @ torch.diag(torch.sqrt(S[:actual_rank]))
Vh_k = torch.diag(torch.sqrt(S[:actual_rank])) @ Vh[:actual_rank, :]
return U_k.contiguous(), Vh_k.contiguous()
# Handle 4D tensors (convolutional layers)
elif weight.ndim == 4:
out_ch, in_ch, kH, kW = weight.shape
# Reshape to 2D for SVD
weight_2d = weight.view(out_ch, in_ch * kH * kW)
# Compute SVD on flattened version
U, S, Vh = torch.linalg.svd(weight_2d.float(), full_matrices=False)
# Calculate appropriate rank
total_variance = torch.sum(S ** 2)
cumulative_variance = torch.cumsum(S ** 2, dim=0)
minimal_rank = torch.searchsorted(cumulative_variance, approximation_factor * total_variance).item() + 1
# Adjust rank for convolutions - typically need lower ranks
conv_rank = min(rank // 2, len(S))
if conv_rank > len(S) * 0.7:
conv_rank = max(len(S) // 4, 8)
actual_rank = max(min(conv_rank, minimal_rank), 8)
# Decompose
U_k = U[:, :actual_rank] @ torch.diag(torch.sqrt(S[:actual_rank]))
Vh_k = torch.diag(torch.sqrt(S[:actual_rank])) @ Vh[:actual_rank, :]
# Reshape back to convolutional format
if kH == 1 and kW == 1: # 1x1 convolutions
U_k = U_k.view(out_ch, actual_rank, 1, 1)
Vh_k = Vh_k.view(actual_rank, in_ch, 1, 1)
else:
# For larger kernels, use spatial decomposition
U_k = U_k.view(out_ch, actual_rank, 1, 1)
Vh_k = Vh_k.view(actual_rank, in_ch, kH, kW)
return U_k.contiguous(), Vh_k.contiguous()
# Handle 1D tensors (biases, embeddings)
elif weight.ndim == 1:
# Don't decompose 1D tensors
return None, None
except Exception as e:
print(f"Decomposition error for tensor with shape {original_shape}: {str(e)[:100]}")
return None, None
def get_architecture_specific_settings(architecture, base_rank):
"""Get optimal settings for different model architectures."""
settings = {
"text_encoder": {
"rank": base_rank,
"approximation_factor": 0.95, # Text encoders need high accuracy
"min_rank": 8,
"max_rank_factor": 0.5 # Use at most 50% of full rank
},
"unet_transformer": {
"rank": base_rank,
"approximation_factor": 0.90,
"min_rank": 16,
"max_rank_factor": 0.4
},
"unet_conv": {
"rank": base_rank // 2, # Convolutions compress better
"approximation_factor": 0.85,
"min_rank": 8,
"max_rank_factor": 0.3
},
"vae": {
"rank": base_rank // 3, # VAE compresses very well
"approximation_factor": 0.80,
"min_rank": 4,
"max_rank_factor": 0.25
},
"auto": {
"rank": base_rank,
"approximation_factor": 0.90,
"min_rank": 8,
"max_rank_factor": 0.5
},
"all": {
"rank": base_rank,
"approximation_factor": 0.90,
"min_rank": 8,
"max_rank_factor": 0.5
}
}
return settings.get(architecture, settings["auto"])
def should_apply_lora(key, weight, architecture, lora_rank):
"""Determine if LoRA should be applied to a specific weight based on architecture selection."""
# Skip bias terms, batchnorm, and very small tensors
if 'bias' in key or 'norm' in key.lower() or 'bn' in key.lower():
return False
# Skip very small tensors
if weight.numel() < 100:
return False
# Skip 1D tensors
if weight.ndim == 1:
return False
# Architecture-specific rules
lower_key = key.lower()
if architecture == "text_encoder":
# Text encoder: focus on embeddings and attention layers
return ('emb' in lower_key or 'embed' in lower_key or
'attn' in lower_key or 'qkv' in lower_key or 'mlp' in lower_key)
elif architecture == "unet_transformer":
# UNet transformers: focus on attention blocks
return ('attn' in lower_key or 'transformer' in lower_key or
'qkv' in lower_key or 'to_out' in lower_key)
elif architecture == "unet_conv":
# UNet convolutional layers
return ('conv' in lower_key or 'resnet' in lower_key or
'downsample' in lower_key or 'upsample' in lower_key)
elif architecture == "vae":
# VAE components
return ('encoder' in lower_key or 'decoder' in lower_key or
'conv' in lower_key or 'post_quant' in lower_key)
elif architecture == "all":
# Apply to all eligible tensors
return True
elif architecture == "auto":
# Auto-detect based on tensor properties
if weight.ndim == 2 and min(weight.shape) > lora_rank // 4:
return True
if weight.ndim == 4 and (weight.shape[0] > lora_rank // 4 or weight.shape[1] > lora_rank // 4):
return True
return False
return False
def convert_safetensors_to_fp8_with_lora(safetensors_path, output_dir, fp8_format, lora_rank=64, architecture="auto", progress=gr.Progress()):
progress(0.1, desc="Starting FP8 conversion with LoRA extraction...")
try:
def read_safetensors_metadata(path):
with open(path, 'rb') as f:
header_size = int.from_bytes(f.read(8), 'little')
header_json = f.read(header_size).decode('utf-8')
header = json.loads(header_json)
return header.get('__metadata__', {})
metadata = read_safetensors_metadata(safetensors_path)
progress(0.2, desc="Loaded metadata.")
state_dict = load_file(safetensors_path)
progress(0.4, desc="Loaded weights.")
# Architecture analysis
architecture_stats = {
'text_encoder': 0,
'unet_transformer': 0,
'unet_conv': 0,
'vae': 0,
'other': 0
}
for key in state_dict:
lower_key = key.lower()
if 'text' in lower_key or 'emb' in lower_key:
architecture_stats['text_encoder'] += 1
elif 'attn' in lower_key or 'transformer' in lower_key:
architecture_stats['unet_transformer'] += 1
elif 'conv' in lower_key or 'resnet' in lower_key:
architecture_stats['unet_conv'] += 1
elif 'vae' in lower_key or 'encoder' in lower_key or 'decoder' in lower_key:
architecture_stats['vae'] += 1
else:
architecture_stats['other'] += 1
print("Architecture analysis:")
for arch, count in architecture_stats.items():
print(f"- {arch}: {count} layers")
if fp8_format == "e5m2":
fp8_dtype = torch.float8_e5m2
else:
fp8_dtype = torch.float8_e4m3fn
sd_fp8 = {}
lora_weights = {}
lora_stats = {
'total_layers': len(state_dict),
'layers_analyzed': 0,
'layers_eligible': 0,
'layers_processed': 0,
'layers_skipped': [],
'architecture_distro': architecture_stats,
'reconstruction_errors': []
}
total = len(state_dict)
lora_keys = []
for i, key in enumerate(state_dict):
progress(0.4 + 0.4 * (i / total), desc=f"Processing {i+1}/{total}: {key.split('.')[-1]}")
weight = state_dict[key]
lora_stats['layers_analyzed'] += 1
if weight.dtype in [torch.float16, torch.float32, torch.bfloat16]:
fp8_weight = weight.to(fp8_dtype)
sd_fp8[key] = fp8_weight
# Determine if we should apply LoRA
eligible_for_lora = should_apply_lora(key, weight, architecture, lora_rank)
if eligible_for_lora:
lora_stats['layers_eligible'] += 1
try:
# Get architecture-specific settings
arch_settings = get_architecture_specific_settings(architecture, lora_rank)
# Adjust rank based on tensor properties
if weight.ndim == 2:
max_possible_rank = min(weight.shape)
actual_rank = min(
arch_settings["rank"],
int(max_possible_rank * arch_settings["max_rank_factor"])
)
actual_rank = max(actual_rank, arch_settings["min_rank"])
elif weight.ndim == 4:
# For conv layers, use smaller rank
actual_rank = min(
arch_settings["rank"],
max(weight.shape[0], weight.shape[1]) // 4
)
actual_rank = max(actual_rank, arch_settings["min_rank"])
else:
# Skip non-2D/4D tensors for LoRA
lora_stats['layers_skipped'].append(f"{key}: unsupported ndim={weight.ndim}")
continue
if actual_rank < 4:
lora_stats['layers_skipped'].append(f"{key}: rank too small ({actual_rank})")
continue
# Perform decomposition with approximation
U, V = low_rank_decomposition(
weight,
rank=actual_rank,
approximation_factor=arch_settings["approximation_factor"]
)
if U is not None and V is not None:
# Store as half-precision
lora_weights[f"lora_A.{key}"] = U.to(torch.float16)
lora_weights[f"lora_B.{key}"] = V.to(torch.float16)
lora_keys.append(key)
lora_stats['layers_processed'] += 1
# Calculate and store reconstruction error
if U.ndim == 2 and V.ndim == 2:
if V.shape[0] == U.shape[1]:
reconstructed = V @ U
else:
reconstructed = U @ V
error = torch.norm(weight.float() - reconstructed.float()) / torch.norm(weight.float())
lora_stats['reconstruction_errors'].append({
'key': key,
'error': error.item(),
'original_shape': list(weight.shape),
'rank': actual_rank
})
else:
lora_stats['layers_skipped'].append(f"{key}: decomposition returned None")
except Exception as e:
error_msg = f"{key}: {str(e)[:100]}"
lora_stats['layers_skipped'].append(error_msg)
else:
reason = "not eligible for selected architecture" if architecture != "auto" else f"ndim={weight.ndim}"
lora_stats['layers_skipped'].append(f"{key}: {reason}")
else:
sd_fp8[key] = weight
lora_stats['layers_skipped'].append(f"{key}: unsupported dtype {weight.dtype}")
# Add reconstruction error statistics
if lora_stats['reconstruction_errors']:
errors = [e['error'] for e in lora_stats['reconstruction_errors']]
lora_stats['avg_reconstruction_error'] = sum(errors) / len(errors) if errors else 0
lora_stats['max_reconstruction_error'] = max(errors) if errors else 0
lora_stats['min_reconstruction_error'] = min(errors) if errors else 0
base_name = os.path.splitext(os.path.basename(safetensors_path))[0]
fp8_path = os.path.join(output_dir, f"{base_name}-fp8-{fp8_format}.safetensors")
lora_path = os.path.join(output_dir, f"{base_name}-lora-r{lora_rank}-{architecture}.safetensors")
save_file(sd_fp8, fp8_path, metadata={"format": "pt", "fp8_format": fp8_format, **metadata})
# Always save LoRA file, even if empty
lora_metadata = {
"format": "pt",
"lora_rank": str(lora_rank),
"architecture": architecture,
"original_filename": os.path.basename(safetensors_path),
"fp8_format": fp8_format,
"stats": json.dumps(lora_stats)
}
save_file(lora_weights, lora_path, metadata=lora_metadata)
# Generate detailed statistics message
stats_msg = f"""
πŸ“Š LoRA Extraction Statistics:
- Total layers analyzed: {lora_stats['layers_analyzed']}
- Layers eligible for LoRA: {lora_stats['layers_eligible']}
- Successfully processed: {lora_stats['layers_processed']}
- Architecture: {architecture}
- FP8 Format: {fp8_format.upper()}
"""
if 'avg_reconstruction_error' in lora_stats:
stats_msg += f"- Avg reconstruction error: {lora_stats['avg_reconstruction_error']:.6f}\n"
stats_msg += f"- Max reconstruction error: {lora_stats['max_reconstruction_error']:.6f}\n"
progress(0.9, desc="Saved FP8 and LoRA files.")
progress(1.0, desc="βœ… FP8 + LoRA extraction complete!")
if lora_stats['layers_processed'] == 0:
stats_msg += "\n\n⚠️ WARNING: No LoRA weights were generated. Try a different architecture selection or lower rank."
elif lora_stats.get('avg_reconstruction_error', 1) < 0.0001:
stats_msg += "\n\nℹ️ NOTE: Very low reconstruction error detected. LoRA may be reconstructing almost perfectly. Consider using lower rank for better compression."
return True, f"FP8 ({fp8_format}) and rank-{lora_rank} LoRA saved.\n{stats_msg}", lora_stats
except Exception as e:
error_msg = f"Conversion error: {str(e)}\n{traceback.format_exc()}"
print(error_msg)
return False, error_msg, None
def parse_hf_url(url):
url = url.strip().rstrip("/")
if not url.startswith("https://huggingface.co/"):
raise ValueError("URL must start with https://huggingface.co/")
path = url.replace("https://huggingface.co/", "")
parts = path.split("/")
if len(parts) < 2:
raise ValueError("Invalid repo format")
repo_id = "/".join(parts[:2])
subfolder = ""
if len(parts) > 3 and parts[2] == "tree":
subfolder = "/".join(parts[4:]) if len(parts) > 4 else ""
elif len(parts) > 2:
subfolder = "/".join(parts[2:])
return repo_id, subfolder
def download_safetensors_file(source_type, repo_url, filename, hf_token=None, progress=gr.Progress()):
temp_dir = tempfile.mkdtemp()
try:
if source_type == "huggingface":
repo_id, subfolder = parse_hf_url(repo_url)
safetensors_path = hf_hub_download(
repo_id=repo_id,
filename=filename,
subfolder=subfolder or None,
cache_dir=temp_dir,
token=hf_token,
resume_download=True
)
elif source_type == "modelscope":
if not MODELScope_AVAILABLE:
raise ImportError("ModelScope not installed")
repo_id = repo_url.strip()
safetensors_path = ms_file_download(model_id=repo_id, file_path=filename)
else:
raise ValueError("Unknown source")
return safetensors_path, temp_dir
except Exception as e:
shutil.rmtree(temp_dir, ignore_errors=True)
raise e
def upload_to_target(target_type, new_repo_id, output_dir, fp8_format, architecture, hf_token=None, modelscope_token=None, private_repo=False):
if target_type == "huggingface":
api = HfApi(token=hf_token)
api.create_repo(repo_id=new_repo_id, private=private_repo, repo_type="model", exist_ok=True)
api.upload_folder(repo_id=new_repo_id, folder_path=output_dir, repo_type="model", token=hf_token)
return f"https://huggingface.co/{new_repo_id}"
elif target_type == "modelscope":
api = ModelScopeApi()
if modelscope_token:
api.login(modelscope_token)
api.push_model(model_id=new_repo_id, model_dir=output_dir)
return f"https://modelscope.cn/models/{new_repo_id}"
else:
raise ValueError("Unknown target")
def process_and_upload_fp8(
source_type,
repo_url,
safetensors_filename,
fp8_format,
lora_rank,
architecture,
target_type,
new_repo_id,
hf_token,
modelscope_token,
private_repo,
progress=gr.Progress()
):
if not re.match(r"^[a-zA-Z0-9._-]+/[a-zA-Z0-9._-]+$", new_repo_id):
return None, "❌ Invalid repo ID format. Use 'username/model-name'.", ""
if source_type == "huggingface" and not hf_token:
return None, "❌ Hugging Face token required for source.", ""
if target_type == "huggingface" and not hf_token:
return None, "❌ Hugging Face token required for target.", ""
# Validate lora_rank
if lora_rank < 4:
return None, "❌ LoRA rank must be at least 4.", ""
temp_dir = None
output_dir = tempfile.mkdtemp()
try:
progress(0.05, desc="Downloading model...")
safetensors_path, temp_dir = download_safetensors_file(
source_type, repo_url, safetensors_filename, hf_token, progress
)
progress(0.25, desc=f"Converting to FP8 with LoRA ({architecture})...")
success, msg, stats = convert_safetensors_to_fp8_with_lora(
safetensors_path, output_dir, fp8_format, lora_rank, architecture, progress
)
if not success:
return None, f"❌ Conversion failed: {msg}", ""
progress(0.9, desc="Uploading...")
repo_url_final = upload_to_target(
target_type, new_repo_id, output_dir, fp8_format, architecture, hf_token, modelscope_token, private_repo
)
base_name = os.path.splitext(safetensors_filename)[0]
lora_filename = f"{base_name}-lora-r{lora_rank}-{architecture}.safetensors"
fp8_filename = f"{base_name}-fp8-{fp8_format}.safetensors"
readme = f"""---
library_name: diffusers
tags:
- fp8
- safetensors
- lora
- low-rank
- diffusion
- architecture-{architecture}
- converted-by-ai-toolkit
---
# FP8 Model with Low-Rank LoRA
- **Source**: `{repo_url}`
- **File**: `{safetensors_filename}`
- **FP8 Format**: `{fp8_format.upper()}`
- **LoRA Rank**: {lora_rank}
- **Architecture Target**: {architecture}
- **LoRA File**: `{lora_filename}`
- **FP8 File**: `{fp8_filename}`
## Architecture Distribution
"""
# Add architecture stats to README if available
if stats and 'architecture_distro' in stats:
readme += "\n| Component | Layer Count |\n|-----------|------------|\n"
for arch, count in stats['architecture_distro'].items():
readme += f"| {arch.replace('_', ' ').title()} | {count} |\n"
readme += f"""
## Usage (Inference)
```python
from safetensors.torch import load_file
import torch
# Load FP8 model
fp8_state = load_file("{fp8_filename}")
lora_state = load_file("{lora_filename}")
# Reconstruct approximate original weights
reconstructed = {{}}
for key in fp8_state:
lora_a_key = f"lora_A.{{key}}"
lora_b_key = f"lora_B.{{key}}"
if lora_a_key in lora_state and lora_b_key in lora_state:
A = lora_state[lora_a_key].to(torch.float32)
B = lora_state[lora_b_key].to(torch.float32)
# Handle different tensor dimensions
if A.ndim == 2 and B.ndim == 2:
lora_weight = B @ A
elif A.ndim == 4 and B.ndim == 4:
# For convolutional LoRA
lora_weight = F.conv2d(fp8_state[key].to(torch.float32),
B, padding=1) + F.conv2d(fp8_state[key].to(torch.float32),
A, padding=1)
else:
# Fallback for mixed dimension cases
lora_weight = B @ A.view(B.shape[1], -1)
if lora_weight.shape != fp8_state[key].shape:
lora_weight = lora_weight.view_as(fp8_state[key])
reconstructed[key] = fp8_state[key].to(torch.float32) + lora_weight
else:
reconstructed[key] = fp8_state[key].to(torch.float32)
```
> **Note**: Requires PyTorch β‰₯ 2.1 for FP8 support. For best results, use the same architecture selection ({architecture}) during inference as was used during extraction.
"""
with open(os.path.join(output_dir, "README.md"), "w") as f:
f.write(readme)
if target_type == "huggingface":
HfApi(token=hf_token).upload_file(
path_or_fileobj=os.path.join(output_dir, "README.md"),
path_in_repo="README.md",
repo_id=new_repo_id,
repo_type="model",
token=hf_token
)
progress(1.0, desc="βœ… Done!")
result_html = f"""
βœ… Success!
Model uploaded to: <a href="{repo_url_final}" target="_blank">{new_repo_id}</a>
Includes:
- FP8 model: `{fp8_filename}`
- LoRA weights: `{lora_filename}` (rank {lora_rank}, architecture: {architecture})
πŸ“Š Stats: {stats['layers_processed']}/{stats['layers_eligible']} eligible layers processed
"""
if 'avg_reconstruction_error' in stats:
result_html += f"<br>Avg reconstruction error: {stats['avg_reconstruction_error']:.6f}"
return gr.HTML(result_html), "βœ… FP8 + LoRA upload successful!", msg
except Exception as e:
error_msg = f"❌ Error: {str(e)}\n{traceback.format_exc()}"
print(error_msg)
return None, error_msg, ""
finally:
if temp_dir:
shutil.rmtree(temp_dir, ignore_errors=True)
shutil.rmtree(output_dir, ignore_errors=True)
with gr.Blocks(title="FP8 + LoRA Extractor (HF ↔ ModelScope)") as demo:
gr.Markdown("# πŸ”„ Advanced FP8 Pruner with Architecture-Specific LoRA Extraction")
gr.Markdown("Convert `.safetensors` β†’ **FP8** + **targeted LoRA** weights for precision recovery. Supports Hugging Face ↔ ModelScope.")
with gr.Row():
with gr.Column():
source_type = gr.Radio(["huggingface", "modelscope"], value="huggingface", label="Source")
repo_url = gr.Textbox(label="Repo URL or ID", placeholder="https://huggingface.co/... or modelscope-id")
safetensors_filename = gr.Textbox(label="Filename", placeholder="model.safetensors")
with gr.Accordion("Advanced LoRA Settings", open=True):
fp8_format = gr.Radio(["e4m3fn", "e5m2"], value="e5m2", label="FP8 Format")
lora_rank = gr.Slider(minimum=4, maximum=256, step=4, value=64, label="LoRA Rank")
architecture = gr.Dropdown(
choices=[
("Auto-detect components", "auto"),
("Text Encoder (embeddings, attention)", "text_encoder"),
("UNet Transformers (attention blocks)", "unet_transformer"),
("UNet Convolutions (resnets, downsampling)", "unet_conv"),
("VAE (encoder/decoder)", "vae"),
("All components", "all")
],
value="auto",
label="Target Architecture",
info="Select which model components to apply LoRA to"
)
with gr.Accordion("Authentication", open=False):
hf_token = gr.Textbox(label="Hugging Face Token", type="password")
modelscope_token = gr.Textbox(label="ModelScope Token (optional)", type="password", visible=MODELScope_AVAILABLE)
with gr.Column():
target_type = gr.Radio(["huggingface", "modelscope"], value="huggingface", label="Target")
new_repo_id = gr.Textbox(label="New Repo ID", placeholder="user/model-fp8-lora")
private_repo = gr.Checkbox(label="Private Repository (HF only)", value=False)
status_output = gr.Markdown()
detailed_log = gr.Textbox(label="Processing Log", interactive=False, lines=10)
convert_btn = gr.Button("πŸš€ Convert & Upload", variant="primary")
repo_link_output = gr.HTML()
convert_btn.click(
fn=process_and_upload_fp8,
inputs=[
source_type,
repo_url,
safetensors_filename,
fp8_format,
lora_rank,
architecture,
target_type,
new_repo_id,
hf_token,
modelscope_token,
private_repo
],
outputs=[repo_link_output, status_output, detailed_log],
show_progress=True
)
gr.Examples(
examples=[
["huggingface", "https://huggingface.co/Yabo/FramePainter/tree/main", "unet_diffusion_pytorch_model.safetensors", "e5m2", 64, "unet_transformer"],
["huggingface", "https://huggingface.co/stabilityai/sdxl-vae", "diffusion_pytorch_model.safetensors", "e4m3fn", 32, "vae"],
["huggingface", "https://huggingface.co/runwayml/stable-diffusion-v1-5/tree/main/text_encoder", "model.safetensors", "e5m2", 48, "text_encoder"]
],
inputs=[source_type, repo_url, safetensors_filename, fp8_format, lora_rank, architecture],
label="Example Conversions"
)
gr.Markdown("""
## πŸ’‘ Usage Tips
- **For Text Encoders**: Use rank 32-64 with `text_encoder` architecture for optimal results.
- **For UNet Attention**: Use `unet_transformer` with rank 64-128 for best quality preservation.
- **For UNet Convolutions**: Use `unet_conv` with lower ranks (16-32) as convolutions compress better.
- **For VAE**: Use `vae` architecture with rank 16-32.
- **Auto Mode**: Let the tool analyze and target appropriate layers automatically.
⚠️ **Note**: Higher ranks produce better quality but larger LoRA files. Start with lower ranks and increase if needed.
""")
demo.launch()