Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -9,6 +9,7 @@ from huggingface_hub import HfApi, hf_hub_download
|
|
| 9 |
from safetensors.torch import load_file, save_file
|
| 10 |
import torch
|
| 11 |
import torch.nn.functional as F
|
|
|
|
| 12 |
try:
|
| 13 |
from modelscope.hub.file_download import model_file_download as ms_file_download
|
| 14 |
from modelscope.hub.api import HubApi as ModelScopeApi
|
|
@@ -17,25 +18,44 @@ except ImportError:
|
|
| 17 |
MODELScope_AVAILABLE = False
|
| 18 |
|
| 19 |
def low_rank_decomposition(weight, rank=64):
|
| 20 |
-
"""
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
|
|
|
|
|
|
|
|
|
| 24 |
try:
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 37 |
except Exception as e:
|
| 38 |
-
print(f"Decomposition error: {e}")
|
|
|
|
| 39 |
return None, None
|
| 40 |
|
| 41 |
def extract_correction_factors(original_weight, fp8_weight):
|
|
@@ -72,36 +92,68 @@ def extract_correction_factors(original_weight, fp8_weight):
|
|
| 72 |
else:
|
| 73 |
return error.mean().to(original_weight.dtype)
|
| 74 |
|
| 75 |
-
def
|
| 76 |
-
"""
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 84 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 85 |
|
| 86 |
-
#
|
| 87 |
-
if "
|
| 88 |
-
|
| 89 |
-
if "clip" in keys or "vision" in keys:
|
| 90 |
-
components["clip"] = True
|
| 91 |
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
components["transformer"] = True
|
| 96 |
|
| 97 |
-
|
| 98 |
-
|
|
|
|
|
|
|
|
|
|
| 99 |
|
| 100 |
-
return
|
| 101 |
|
| 102 |
def convert_safetensors_to_fp8_with_recovery(safetensors_path, output_dir, fp8_format,
|
| 103 |
-
|
| 104 |
-
"""Convert model to FP8 with customizable per-
|
| 105 |
progress(0.1, desc="Starting FP8 conversion with precision recovery...")
|
| 106 |
try:
|
| 107 |
def read_safetensors_metadata(path):
|
|
@@ -118,10 +170,6 @@ def convert_safetensors_to_fp8_with_recovery(safetensors_path, output_dir, fp8_f
|
|
| 118 |
state_dict = load_file(safetensors_path)
|
| 119 |
progress(0.3, desc="Loaded model weights.")
|
| 120 |
|
| 121 |
-
# Auto-detect architecture
|
| 122 |
-
detected_components = analyze_model_architecture(state_dict)
|
| 123 |
-
print(f"Detected components: {detected_components}")
|
| 124 |
-
|
| 125 |
# Setup FP8 format
|
| 126 |
fp8_dtype = torch.float8_e5m2 if fp8_format == "e5m2" else torch.float8_e4m3fn
|
| 127 |
|
|
@@ -132,27 +180,17 @@ def convert_safetensors_to_fp8_with_recovery(safetensors_path, output_dir, fp8_f
|
|
| 132 |
"total_layers": len(state_dict),
|
| 133 |
"processed_layers": 0,
|
| 134 |
"skipped_layers": [],
|
| 135 |
-
"
|
| 136 |
-
"
|
| 137 |
}
|
| 138 |
|
| 139 |
-
# Create a mapping from layer keys to recovery config
|
| 140 |
-
layer_recovery_map = {}
|
| 141 |
-
for config in recovery_configs:
|
| 142 |
-
element_pattern = config["element"].lower()
|
| 143 |
-
for key in state_dict:
|
| 144 |
-
if element_pattern == "all" or element_pattern in key.lower():
|
| 145 |
-
# Only set if not already set (first match wins)
|
| 146 |
-
if key not in layer_recovery_map:
|
| 147 |
-
layer_recovery_map[key] = config
|
| 148 |
-
|
| 149 |
# Process each tensor
|
| 150 |
total = len(state_dict)
|
| 151 |
for i, key in enumerate(state_dict):
|
| 152 |
progress(0.3 + 0.5 * (i / total), desc=f"Processing {i+1}/{total}: {key.split('.')[-1]}")
|
| 153 |
weight = state_dict[key]
|
|
|
|
| 154 |
|
| 155 |
-
# Convert to FP8
|
| 156 |
if weight.dtype in [torch.float16, torch.float32, torch.bfloat16]:
|
| 157 |
fp8_weight = weight.to(fp8_dtype)
|
| 158 |
sd_fp8[key] = fp8_weight
|
|
@@ -161,43 +199,53 @@ def convert_safetensors_to_fp8_with_recovery(safetensors_path, output_dir, fp8_f
|
|
| 161 |
stats["skipped_layers"].append(f"{key}: non-float dtype")
|
| 162 |
continue
|
| 163 |
|
| 164 |
-
#
|
| 165 |
-
|
| 166 |
-
|
| 167 |
-
stats["skipped_layers"].append(f"{key}: no recovery configured")
|
| 168 |
-
continue
|
| 169 |
|
| 170 |
-
|
| 171 |
-
|
| 172 |
-
|
| 173 |
-
|
| 174 |
-
|
| 175 |
-
|
| 176 |
-
|
| 177 |
-
|
| 178 |
-
|
| 179 |
-
|
| 180 |
-
|
| 181 |
-
|
| 182 |
-
|
| 183 |
-
|
| 184 |
-
|
| 185 |
-
|
| 186 |
-
|
| 187 |
-
|
| 188 |
-
|
| 189 |
-
|
| 190 |
-
|
| 191 |
-
|
| 192 |
-
|
| 193 |
-
|
| 194 |
-
|
| 195 |
-
|
| 196 |
-
|
| 197 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 198 |
|
| 199 |
-
|
| 200 |
-
|
|
|
|
| 201 |
|
| 202 |
# Save FP8 model
|
| 203 |
base_name = os.path.splitext(os.path.basename(safetensors_path))[0]
|
|
@@ -211,7 +259,7 @@ def convert_safetensors_to_fp8_with_recovery(safetensors_path, output_dir, fp8_f
|
|
| 211 |
recovery_metadata = {
|
| 212 |
"format": "pt",
|
| 213 |
"fp8_format": fp8_format,
|
| 214 |
-
"
|
| 215 |
"stats": json.dumps(stats)
|
| 216 |
}
|
| 217 |
save_file(recovery_weights, recovery_path, metadata=recovery_metadata)
|
|
@@ -225,6 +273,16 @@ def convert_safetensors_to_fp8_with_recovery(safetensors_path, output_dir, fp8_f
|
|
| 225 |
stats_msg += f" - LoRA recovery: {stats['recovery_counts']['lora']}\n"
|
| 226 |
stats_msg += f" - Difference recovery: {stats['recovery_counts']['diff']}\n"
|
| 227 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 228 |
if not recovery_weights:
|
| 229 |
stats_msg += "\nβ οΈ No recovery weights were generated. All layers use pure FP8."
|
| 230 |
|
|
@@ -232,9 +290,8 @@ def convert_safetensors_to_fp8_with_recovery(safetensors_path, output_dir, fp8_f
|
|
| 232 |
return True, stats_msg, stats, fp8_path, recovery_path
|
| 233 |
|
| 234 |
except Exception as e:
|
| 235 |
-
|
| 236 |
-
|
| 237 |
-
return False, error_msg, None, None, None
|
| 238 |
|
| 239 |
def parse_hf_url(url):
|
| 240 |
url = url.strip().rstrip("/")
|
|
@@ -292,12 +349,166 @@ def upload_to_target(target_type, new_repo_id, output_dir, fp8_format, hf_token=
|
|
| 292 |
else:
|
| 293 |
raise ValueError("Unknown target")
|
| 294 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 295 |
def process_and_upload_fp8(
|
| 296 |
source_type,
|
| 297 |
repo_url,
|
| 298 |
safetensors_filename,
|
| 299 |
fp8_format,
|
| 300 |
-
|
| 301 |
target_type,
|
| 302 |
new_repo_id,
|
| 303 |
hf_token,
|
|
@@ -312,20 +523,18 @@ def process_and_upload_fp8(
|
|
| 312 |
if target_type == "huggingface" and not hf_token:
|
| 313 |
return None, "β Hugging Face token required for target.", "", ""
|
| 314 |
|
| 315 |
-
# Parse recovery
|
| 316 |
try:
|
| 317 |
-
|
| 318 |
except json.JSONDecodeError:
|
| 319 |
-
return None, "β Invalid recovery
|
| 320 |
|
| 321 |
-
# Validate
|
| 322 |
valid_methods = ["none", "lora", "diff"]
|
| 323 |
-
for
|
| 324 |
-
if "
|
| 325 |
-
return None, "β Invalid
|
| 326 |
-
if
|
| 327 |
-
return None, f"β Invalid method: {config['method']}. Use 'none', 'lora', or 'diff'", "", ""
|
| 328 |
-
if config["method"] == "lora" and "rank" not in config:
|
| 329 |
return None, "β LoRA method requires 'rank' parameter", "", ""
|
| 330 |
|
| 331 |
temp_dir = None
|
|
@@ -338,7 +547,7 @@ def process_and_upload_fp8(
|
|
| 338 |
|
| 339 |
progress(0.2, desc="Converting to FP8 with precision recovery...")
|
| 340 |
success, msg, stats, fp8_path, recovery_path = convert_safetensors_to_fp8_with_recovery(
|
| 341 |
-
safetensors_path, output_dir, fp8_format,
|
| 342 |
)
|
| 343 |
|
| 344 |
if not success:
|
|
@@ -363,16 +572,16 @@ tags:
|
|
| 363 |
- mixed-method
|
| 364 |
- converted-by-gradio
|
| 365 |
---
|
| 366 |
-
# FP8 Model with
|
| 367 |
- **Source**: `{repo_url}`
|
| 368 |
- **Original File**: `{safetensors_filename}`
|
| 369 |
- **FP8 Format**: `{fp8_format.upper()}`
|
| 370 |
- **FP8 File**: `{fp8_filename}`
|
| 371 |
- **Recovery File**: `{recovery_filename if recovery_filename else "None"}`
|
| 372 |
|
| 373 |
-
## Recovery
|
| 374 |
```json
|
| 375 |
-
{json.dumps(
|
| 376 |
```
|
| 377 |
|
| 378 |
## Usage (Inference)
|
|
@@ -392,16 +601,19 @@ for key in fp8_state:
|
|
| 392 |
fp8_weight = fp8_state[key].to(torch.float32) # Convert to float32 for computation
|
| 393 |
|
| 394 |
# Apply LoRA recovery if available
|
| 395 |
-
|
| 396 |
-
|
| 397 |
-
|
|
|
|
|
|
|
| 398 |
# Reconstruct the low-rank approximation
|
| 399 |
lora_weight = B @ A
|
| 400 |
fp8_weight = fp8_weight + lora_weight
|
| 401 |
|
| 402 |
# Apply difference recovery if available
|
| 403 |
-
|
| 404 |
-
|
|
|
|
| 405 |
fp8_weight = fp8_weight + diff
|
| 406 |
|
| 407 |
reconstructed[key] = fp8_weight
|
|
@@ -454,18 +666,17 @@ Includes:
|
|
| 454 |
recovery_details)
|
| 455 |
|
| 456 |
except Exception as e:
|
| 457 |
-
|
| 458 |
-
|
| 459 |
-
return None, error_details, "", ""
|
| 460 |
|
| 461 |
finally:
|
| 462 |
if temp_dir:
|
| 463 |
shutil.rmtree(temp_dir, ignore_errors=True)
|
| 464 |
shutil.rmtree(output_dir, ignore_errors=True)
|
| 465 |
|
| 466 |
-
with gr.Blocks(title="Advanced FP8 Quantizer with
|
| 467 |
-
gr.Markdown("# π Advanced FP8 Quantizer with Per-
|
| 468 |
-
gr.Markdown("Convert `.safetensors` β **FP8** + **customizable precision recovery**. Full control over LoRA and difference methods per
|
| 469 |
|
| 470 |
with gr.Row():
|
| 471 |
with gr.Column():
|
|
@@ -476,40 +687,69 @@ with gr.Blocks(title="Advanced FP8 Quantizer with Mixed Precision Recovery") as
|
|
| 476 |
with gr.Accordion("FP8 Settings", open=True):
|
| 477 |
fp8_format = gr.Radio(["e4m3fn", "e5m2"], value="e5m2", label="FP8 Format")
|
| 478 |
|
| 479 |
-
with gr.Accordion("Per-
|
| 480 |
gr.Markdown("""
|
| 481 |
-
### Configure recovery strategy for each
|
| 482 |
|
| 483 |
-
Format: JSON array of
|
| 484 |
```json
|
| 485 |
[
|
| 486 |
-
{
|
| 487 |
-
|
| 488 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 489 |
]
|
| 490 |
```
|
| 491 |
|
| 492 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 493 |
- `method`: "none" (pure FP8), "lora" (low-rank adaptation), or "diff" (difference/correction)
|
| 494 |
-
- `rank`: Required for "lora" method
|
| 495 |
|
| 496 |
-
**Rules are applied in order** - first match wins. Always end with
|
| 497 |
""")
|
| 498 |
|
| 499 |
-
|
| 500 |
-
value=""
|
| 501 |
-
|
| 502 |
-
|
| 503 |
-
{"element": "decoder", "method": "diff"},
|
| 504 |
-
{"element": "text", "method": "lora", "rank": 64},
|
| 505 |
-
{"element": "emb", "method": "lora", "rank": 64},
|
| 506 |
-
{"element": "attn", "method": "lora", "rank": 128},
|
| 507 |
-
{"element": "all", "method": "none"}
|
| 508 |
-
]""",
|
| 509 |
-
lines=10,
|
| 510 |
-
label="Recovery Configuration (JSON)",
|
| 511 |
interactive=True
|
| 512 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 513 |
|
| 514 |
with gr.Accordion("Authentication", open=False):
|
| 515 |
hf_token = gr.Textbox(label="Hugging Face Token", type="password")
|
|
@@ -534,7 +774,7 @@ with gr.Blocks(title="Advanced FP8 Quantizer with Mixed Precision Recovery") as
|
|
| 534 |
repo_url,
|
| 535 |
safetensors_filename,
|
| 536 |
fp8_format,
|
| 537 |
-
|
| 538 |
target_type,
|
| 539 |
new_repo_id,
|
| 540 |
hf_token,
|
|
@@ -552,12 +792,7 @@ with gr.Blocks(title="Advanced FP8 Quantizer with Mixed Precision Recovery") as
|
|
| 552 |
"https://huggingface.co/stabilityai/sdxl-vae",
|
| 553 |
"diffusion_pytorch_model.safetensors",
|
| 554 |
"e4m3fn",
|
| 555 |
-
""
|
| 556 |
-
{"element": "vae", "method": "diff"},
|
| 557 |
-
{"element": "encoder", "method": "diff"},
|
| 558 |
-
{"element": "decoder", "method": "diff"},
|
| 559 |
-
{"element": "all", "method": "none"}
|
| 560 |
-
]""",
|
| 561 |
"huggingface"
|
| 562 |
],
|
| 563 |
[
|
|
@@ -565,11 +800,7 @@ with gr.Blocks(title="Advanced FP8 Quantizer with Mixed Precision Recovery") as
|
|
| 565 |
"https://huggingface.co/runwayml/stable-diffusion-v1-5/tree/main/text_encoder",
|
| 566 |
"model.safetensors",
|
| 567 |
"e5m2",
|
| 568 |
-
""
|
| 569 |
-
{"element": "text", "method": "lora", "rank": 64},
|
| 570 |
-
{"element": "emb", "method": "lora", "rank": 64},
|
| 571 |
-
{"element": "all", "method": "none"}
|
| 572 |
-
]""",
|
| 573 |
"huggingface"
|
| 574 |
],
|
| 575 |
[
|
|
@@ -577,44 +808,44 @@ with gr.Blocks(title="Advanced FP8 Quantizer with Mixed Precision Recovery") as
|
|
| 577 |
"https://huggingface.co/Yabo/FramePainter/tree/main",
|
| 578 |
"unet_diffusion_pytorch_model.safetensors",
|
| 579 |
"e5m2",
|
| 580 |
-
""
|
| 581 |
-
{"element": "attn", "method": "lora", "rank": 128},
|
| 582 |
-
{"element": "transformer", "method": "lora", "rank": 96},
|
| 583 |
-
{"element": "conv", "method": "diff"},
|
| 584 |
-
{"element": "resnet", "method": "diff"},
|
| 585 |
-
{"element": "all", "method": "none"}
|
| 586 |
-
]""",
|
| 587 |
"huggingface"
|
| 588 |
]
|
| 589 |
],
|
| 590 |
-
inputs=[source_type, repo_url, safetensors_filename, fp8_format,
|
| 591 |
-
label="Example Conversions"
|
|
|
|
| 592 |
)
|
| 593 |
|
| 594 |
gr.Markdown("""
|
| 595 |
-
## π‘
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 596 |
|
| 597 |
-
### **
|
| 598 |
-
- **
|
| 599 |
-
- **
|
| 600 |
-
-
|
| 601 |
-
-
|
| 602 |
-
-
|
| 603 |
-
|
| 604 |
-
|
| 605 |
|
| 606 |
-
### **
|
| 607 |
-
- **
|
| 608 |
-
- **
|
| 609 |
-
- **Benefits**: Works with any tensor shape, more accurate for spatial features
|
| 610 |
-
- **Limitations**: Larger file size than LoRA for equivalent quality
|
| 611 |
|
| 612 |
-
### **Rule
|
| 613 |
-
-
|
| 614 |
-
-
|
| 615 |
-
-
|
| 616 |
|
| 617 |
-
> **Pro Tip**:
|
| 618 |
""")
|
| 619 |
|
| 620 |
demo.launch()
|
|
|
|
| 9 |
from safetensors.torch import load_file, save_file
|
| 10 |
import torch
|
| 11 |
import torch.nn.functional as F
|
| 12 |
+
import traceback
|
| 13 |
try:
|
| 14 |
from modelscope.hub.file_download import model_file_download as ms_file_download
|
| 15 |
from modelscope.hub.api import HubApi as ModelScopeApi
|
|
|
|
| 18 |
MODELScope_AVAILABLE = False
|
| 19 |
|
| 20 |
def low_rank_decomposition(weight, rank=64):
|
| 21 |
+
"""
|
| 22 |
+
Correct LoRA decomposition supporting 2D and 4D tensors.
|
| 23 |
+
Returns (lora_A, lora_B) such that weight β lora_B @ lora_A for 2D,
|
| 24 |
+
or appropriate conv form for 4D.
|
| 25 |
+
"""
|
| 26 |
+
original_shape = weight.shape
|
| 27 |
+
original_dtype = weight.dtype
|
| 28 |
try:
|
| 29 |
+
if weight.ndim == 2:
|
| 30 |
+
actual_rank = min(rank, min(weight.shape) // 2)
|
| 31 |
+
if actual_rank < 4:
|
| 32 |
+
return None, None
|
| 33 |
+
U, S, Vh = torch.linalg.svd(weight.float(), full_matrices=False)
|
| 34 |
+
S_sqrt = torch.sqrt(S[:actual_rank])
|
| 35 |
+
# Standard LoRA factorization: W β W_B @ W_A
|
| 36 |
+
W_A = (Vh[:actual_rank, :] * S_sqrt.unsqueeze(1)).contiguous() # [rank, in_features]
|
| 37 |
+
W_B = (U[:, :actual_rank] * S_sqrt.unsqueeze(0)).contiguous() # [out_features, rank]
|
| 38 |
+
return W_A.to(original_dtype), W_B.to(original_dtype)
|
| 39 |
+
elif weight.ndim == 4:
|
| 40 |
+
out_ch, in_ch, k_h, k_w = weight.shape
|
| 41 |
+
if k_h * k_w <= 9: # small conv kernels (e.g., 3x3)
|
| 42 |
+
# Reshape to 2D: [out_ch, in_ch * k_h * k_w]
|
| 43 |
+
weight_2d = weight.view(out_ch, -1)
|
| 44 |
+
actual_rank = min(rank, min(weight_2d.shape) // 2)
|
| 45 |
+
if actual_rank < 4:
|
| 46 |
+
return None, None
|
| 47 |
+
U, S, Vh = torch.linalg.svd(weight_2d.float(), full_matrices=False)
|
| 48 |
+
S_sqrt = torch.sqrt(S[:actual_rank])
|
| 49 |
+
W_A_2d = (Vh[:actual_rank, :] * S_sqrt.unsqueeze(1)).contiguous()
|
| 50 |
+
W_B_2d = (U[:, :actual_rank] * S_sqrt.unsqueeze(0)).contiguous()
|
| 51 |
+
# Reshape back to conv format
|
| 52 |
+
W_A = W_A_2d.view(actual_rank, in_ch, k_h, k_w).contiguous()
|
| 53 |
+
W_B = W_B_2d.view(out_ch, actual_rank, 1, 1).contiguous()
|
| 54 |
+
return W_A.to(original_dtype), W_B.to(original_dtype)
|
| 55 |
+
return None, None
|
| 56 |
except Exception as e:
|
| 57 |
+
print(f"Decomposition error for {original_shape}: {e}")
|
| 58 |
+
traceback.print_exc()
|
| 59 |
return None, None
|
| 60 |
|
| 61 |
def extract_correction_factors(original_weight, fp8_weight):
|
|
|
|
| 92 |
else:
|
| 93 |
return error.mean().to(original_weight.dtype)
|
| 94 |
|
| 95 |
+
def get_tensor_info(tensor):
|
| 96 |
+
"""Get detailed tensor information for pattern matching."""
|
| 97 |
+
shape = list(tensor.shape)
|
| 98 |
+
dim = tensor.dim()
|
| 99 |
+
numel = tensor.numel()
|
| 100 |
+
dtype = str(tensor.dtype)
|
| 101 |
+
|
| 102 |
+
# Determine tensor type based on shape
|
| 103 |
+
tensor_type = "other"
|
| 104 |
+
if dim == 4 and shape[2] == shape[3]: # Convolutional layer with square kernel
|
| 105 |
+
tensor_type = "conv"
|
| 106 |
+
elif dim == 2:
|
| 107 |
+
if shape[0] > shape[1] * 4: # More likely to be output projection
|
| 108 |
+
tensor_type = "output_proj"
|
| 109 |
+
elif shape[1] > shape[0] * 4: # More likely to be input projection
|
| 110 |
+
tensor_type = "input_proj"
|
| 111 |
+
else:
|
| 112 |
+
tensor_type = "linear"
|
| 113 |
+
elif dim == 1:
|
| 114 |
+
tensor_type = "bias"
|
| 115 |
+
|
| 116 |
+
return {
|
| 117 |
+
"shape": shape,
|
| 118 |
+
"dim": dim,
|
| 119 |
+
"numel": numel,
|
| 120 |
+
"type": tensor_type,
|
| 121 |
+
"dtype": dtype
|
| 122 |
}
|
| 123 |
+
|
| 124 |
+
def matches_pattern(key, tensor_info, pattern):
|
| 125 |
+
"""Check if a tensor matches a pattern definition."""
|
| 126 |
+
key_lower = key.lower()
|
| 127 |
+
|
| 128 |
+
# Match by key name pattern
|
| 129 |
+
if "key_pattern" in pattern:
|
| 130 |
+
key_pattern = pattern["key_pattern"].lower()
|
| 131 |
+
if key_pattern != "all" and key_pattern not in key_lower:
|
| 132 |
+
return False
|
| 133 |
+
|
| 134 |
+
# Match by tensor dimension
|
| 135 |
+
if "dim" in pattern and tensor_info["dim"] != pattern["dim"]:
|
| 136 |
+
return False
|
| 137 |
|
| 138 |
+
# Match by tensor type
|
| 139 |
+
if "type" in pattern and tensor_info["type"] != pattern["type"]:
|
| 140 |
+
return False
|
|
|
|
|
|
|
| 141 |
|
| 142 |
+
# Match by minimum tensor size
|
| 143 |
+
if "min_size" in pattern and tensor_info["numel"] < pattern["min_size"]:
|
| 144 |
+
return False
|
|
|
|
| 145 |
|
| 146 |
+
# Match by shape constraints
|
| 147 |
+
if "shape_contains" in pattern:
|
| 148 |
+
shape_contains = pattern["shape_contains"]
|
| 149 |
+
if not any(shape_contains == dim for dim in tensor_info["shape"]):
|
| 150 |
+
return False
|
| 151 |
|
| 152 |
+
return True
|
| 153 |
|
| 154 |
def convert_safetensors_to_fp8_with_recovery(safetensors_path, output_dir, fp8_format,
|
| 155 |
+
recovery_rules, progress=gr.Progress()):
|
| 156 |
+
"""Convert model to FP8 with customizable per-tensor recovery strategies."""
|
| 157 |
progress(0.1, desc="Starting FP8 conversion with precision recovery...")
|
| 158 |
try:
|
| 159 |
def read_safetensors_metadata(path):
|
|
|
|
| 170 |
state_dict = load_file(safetensors_path)
|
| 171 |
progress(0.3, desc="Loaded model weights.")
|
| 172 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 173 |
# Setup FP8 format
|
| 174 |
fp8_dtype = torch.float8_e5m2 if fp8_format == "e5m2" else torch.float8_e4m3fn
|
| 175 |
|
|
|
|
| 180 |
"total_layers": len(state_dict),
|
| 181 |
"processed_layers": 0,
|
| 182 |
"skipped_layers": [],
|
| 183 |
+
"recovery_counts": {"lora": 0, "diff": 0},
|
| 184 |
+
"rule_matches": {i: 0 for i in range(len(recovery_rules))}
|
| 185 |
}
|
| 186 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 187 |
# Process each tensor
|
| 188 |
total = len(state_dict)
|
| 189 |
for i, key in enumerate(state_dict):
|
| 190 |
progress(0.3 + 0.5 * (i / total), desc=f"Processing {i+1}/{total}: {key.split('.')[-1]}")
|
| 191 |
weight = state_dict[key]
|
| 192 |
+
tensor_info = get_tensor_info(weight)
|
| 193 |
|
|
|
|
| 194 |
if weight.dtype in [torch.float16, torch.float32, torch.bfloat16]:
|
| 195 |
fp8_weight = weight.to(fp8_dtype)
|
| 196 |
sd_fp8[key] = fp8_weight
|
|
|
|
| 199 |
stats["skipped_layers"].append(f"{key}: non-float dtype")
|
| 200 |
continue
|
| 201 |
|
| 202 |
+
# Find matching rule for this tensor
|
| 203 |
+
recovery_applied = False
|
| 204 |
+
matched_rule_index = -1
|
|
|
|
|
|
|
| 205 |
|
| 206 |
+
for rule_idx, rule in enumerate(recovery_rules):
|
| 207 |
+
if matches_pattern(key, tensor_info, rule):
|
| 208 |
+
matched_rule_index = rule_idx
|
| 209 |
+
recovery_method = rule["method"]
|
| 210 |
+
|
| 211 |
+
try:
|
| 212 |
+
if recovery_method == "lora" and weight.ndim == 2:
|
| 213 |
+
# LoRA recovery for 2D tensors only
|
| 214 |
+
rank = rule.get("rank", 64)
|
| 215 |
+
# Adjust rank for smaller matrices
|
| 216 |
+
adjusted_rank = min(rank, min(weight.shape) // 2)
|
| 217 |
+
if adjusted_rank >= 4:
|
| 218 |
+
A, B = low_rank_decomposition(weight, rank=adjusted_rank)
|
| 219 |
+
if A is not None and B is not None:
|
| 220 |
+
recovery_weights[f"lora_A.{key}"] = A
|
| 221 |
+
recovery_weights[f"lora_B.{key}"] = B
|
| 222 |
+
stats["processed_layers"] += 1
|
| 223 |
+
stats["recovery_counts"]["lora"] += 1
|
| 224 |
+
stats["rule_matches"][rule_idx] += 1
|
| 225 |
+
recovery_applied = True
|
| 226 |
+
break
|
| 227 |
+
|
| 228 |
+
elif recovery_method == "diff":
|
| 229 |
+
# Difference/correction recovery for any tensor type
|
| 230 |
+
corr = extract_correction_factors(weight, fp8_weight)
|
| 231 |
+
if corr is not None:
|
| 232 |
+
recovery_weights[f"diff.{key}"] = corr
|
| 233 |
+
stats["processed_layers"] += 1
|
| 234 |
+
stats["recovery_counts"]["diff"] += 1
|
| 235 |
+
stats["rule_matches"][rule_idx] += 1
|
| 236 |
+
recovery_applied = True
|
| 237 |
+
break
|
| 238 |
+
|
| 239 |
+
# If method is "none" or recovery failed, continue to next rule
|
| 240 |
+
if recovery_method == "none":
|
| 241 |
+
break
|
| 242 |
+
|
| 243 |
+
except Exception as e:
|
| 244 |
+
stats["skipped_layers"].append(f"{key}: error with rule {rule_idx} - {str(e)}")
|
| 245 |
|
| 246 |
+
if not recovery_applied:
|
| 247 |
+
reason = "no matching rule" if matched_rule_index == -1 else f"recovery failed with rule {matched_rule_index}"
|
| 248 |
+
stats["skipped_layers"].append(f"{key}: {reason}")
|
| 249 |
|
| 250 |
# Save FP8 model
|
| 251 |
base_name = os.path.splitext(os.path.basename(safetensors_path))[0]
|
|
|
|
| 259 |
recovery_metadata = {
|
| 260 |
"format": "pt",
|
| 261 |
"fp8_format": fp8_format,
|
| 262 |
+
"recovery_rules": json.dumps(recovery_rules),
|
| 263 |
"stats": json.dumps(stats)
|
| 264 |
}
|
| 265 |
save_file(recovery_weights, recovery_path, metadata=recovery_metadata)
|
|
|
|
| 273 |
stats_msg += f" - LoRA recovery: {stats['recovery_counts']['lora']}\n"
|
| 274 |
stats_msg += f" - Difference recovery: {stats['recovery_counts']['diff']}\n"
|
| 275 |
|
| 276 |
+
# Show rule effectiveness
|
| 277 |
+
stats_msg += "\nRule effectiveness:\n"
|
| 278 |
+
for rule_idx, rule in enumerate(recovery_rules):
|
| 279 |
+
matches = stats["rule_matches"][rule_idx]
|
| 280 |
+
if matches > 0:
|
| 281 |
+
method = rule["method"]
|
| 282 |
+
pattern = rule.get("key_pattern", "no pattern")
|
| 283 |
+
rank_info = f" (rank {rule.get('rank', 'N/A')})" if method == "lora" else ""
|
| 284 |
+
stats_msg += f"- Rule {rule_idx}: {matches} layers matched pattern '{pattern}' with {method}{rank_info}\n"
|
| 285 |
+
|
| 286 |
if not recovery_weights:
|
| 287 |
stats_msg += "\nβ οΈ No recovery weights were generated. All layers use pure FP8."
|
| 288 |
|
|
|
|
| 290 |
return True, stats_msg, stats, fp8_path, recovery_path
|
| 291 |
|
| 292 |
except Exception as e:
|
| 293 |
+
traceback.print_exc()
|
| 294 |
+
return False, str(e), None, None, None
|
|
|
|
| 295 |
|
| 296 |
def parse_hf_url(url):
|
| 297 |
url = url.strip().rstrip("/")
|
|
|
|
| 349 |
else:
|
| 350 |
raise ValueError("Unknown target")
|
| 351 |
|
| 352 |
+
def generate_default_rules(architecture="auto"):
|
| 353 |
+
"""Generate default recovery rules based on architecture."""
|
| 354 |
+
if architecture == "vae":
|
| 355 |
+
return """[
|
| 356 |
+
{
|
| 357 |
+
"key_pattern": "vae",
|
| 358 |
+
"dim": 4,
|
| 359 |
+
"method": "diff"
|
| 360 |
+
},
|
| 361 |
+
{
|
| 362 |
+
"key_pattern": "encoder",
|
| 363 |
+
"dim": 4,
|
| 364 |
+
"method": "diff"
|
| 365 |
+
},
|
| 366 |
+
{
|
| 367 |
+
"key_pattern": "decoder",
|
| 368 |
+
"dim": 4,
|
| 369 |
+
"method": "diff"
|
| 370 |
+
},
|
| 371 |
+
{
|
| 372 |
+
"key_pattern": "all",
|
| 373 |
+
"method": "none"
|
| 374 |
+
}
|
| 375 |
+
]"""
|
| 376 |
+
elif architecture == "text_encoder":
|
| 377 |
+
return """[
|
| 378 |
+
{
|
| 379 |
+
"key_pattern": "text",
|
| 380 |
+
"dim": 2,
|
| 381 |
+
"min_size": 10000,
|
| 382 |
+
"method": "lora",
|
| 383 |
+
"rank": 64
|
| 384 |
+
},
|
| 385 |
+
{
|
| 386 |
+
"key_pattern": "emb",
|
| 387 |
+
"dim": 2,
|
| 388 |
+
"min_size": 10000,
|
| 389 |
+
"method": "lora",
|
| 390 |
+
"rank": 64
|
| 391 |
+
},
|
| 392 |
+
{
|
| 393 |
+
"key_pattern": "attn",
|
| 394 |
+
"dim": 2,
|
| 395 |
+
"min_size": 10000,
|
| 396 |
+
"method": "lora",
|
| 397 |
+
"rank": 128
|
| 398 |
+
},
|
| 399 |
+
{
|
| 400 |
+
"key_pattern": "all",
|
| 401 |
+
"method": "none"
|
| 402 |
+
}
|
| 403 |
+
]"""
|
| 404 |
+
elif architecture == "unet_transformer":
|
| 405 |
+
return """[
|
| 406 |
+
{
|
| 407 |
+
"key_pattern": "attn",
|
| 408 |
+
"dim": 2,
|
| 409 |
+
"min_size": 10000,
|
| 410 |
+
"method": "lora",
|
| 411 |
+
"rank": 128
|
| 412 |
+
},
|
| 413 |
+
{
|
| 414 |
+
"key_pattern": "transformer",
|
| 415 |
+
"dim": 2,
|
| 416 |
+
"min_size": 10000,
|
| 417 |
+
"method": "lora",
|
| 418 |
+
"rank": 96
|
| 419 |
+
},
|
| 420 |
+
{
|
| 421 |
+
"key_pattern": "all",
|
| 422 |
+
"method": "none"
|
| 423 |
+
}
|
| 424 |
+
]"""
|
| 425 |
+
elif architecture == "unet_conv":
|
| 426 |
+
return """[
|
| 427 |
+
{
|
| 428 |
+
"key_pattern": "conv",
|
| 429 |
+
"dim": 4,
|
| 430 |
+
"method": "diff"
|
| 431 |
+
},
|
| 432 |
+
{
|
| 433 |
+
"key_pattern": "resnet",
|
| 434 |
+
"dim": 4,
|
| 435 |
+
"method": "diff"
|
| 436 |
+
},
|
| 437 |
+
{
|
| 438 |
+
"key_pattern": "down",
|
| 439 |
+
"dim": 4,
|
| 440 |
+
"method": "diff"
|
| 441 |
+
},
|
| 442 |
+
{
|
| 443 |
+
"key_pattern": "up",
|
| 444 |
+
"dim": 4,
|
| 445 |
+
"method": "diff"
|
| 446 |
+
},
|
| 447 |
+
{
|
| 448 |
+
"key_pattern": "all",
|
| 449 |
+
"method": "none"
|
| 450 |
+
}
|
| 451 |
+
]"""
|
| 452 |
+
else: # "all" or "auto"
|
| 453 |
+
return """[
|
| 454 |
+
{
|
| 455 |
+
"key_pattern": "vae",
|
| 456 |
+
"dim": 4,
|
| 457 |
+
"method": "diff"
|
| 458 |
+
},
|
| 459 |
+
{
|
| 460 |
+
"key_pattern": "encoder",
|
| 461 |
+
"dim": 4,
|
| 462 |
+
"method": "diff"
|
| 463 |
+
},
|
| 464 |
+
{
|
| 465 |
+
"key_pattern": "decoder",
|
| 466 |
+
"dim": 4,
|
| 467 |
+
"method": "diff"
|
| 468 |
+
},
|
| 469 |
+
{
|
| 470 |
+
"key_pattern": "text",
|
| 471 |
+
"dim": 2,
|
| 472 |
+
"min_size": 10000,
|
| 473 |
+
"method": "lora",
|
| 474 |
+
"rank": 64
|
| 475 |
+
},
|
| 476 |
+
{
|
| 477 |
+
"key_pattern": "emb",
|
| 478 |
+
"dim": 2,
|
| 479 |
+
"min_size": 10000,
|
| 480 |
+
"method": "lora",
|
| 481 |
+
"rank": 64
|
| 482 |
+
},
|
| 483 |
+
{
|
| 484 |
+
"key_pattern": "attn",
|
| 485 |
+
"dim": 2,
|
| 486 |
+
"min_size": 10000,
|
| 487 |
+
"method": "lora",
|
| 488 |
+
"rank": 128
|
| 489 |
+
},
|
| 490 |
+
{
|
| 491 |
+
"key_pattern": "conv",
|
| 492 |
+
"dim": 4,
|
| 493 |
+
"method": "diff"
|
| 494 |
+
},
|
| 495 |
+
{
|
| 496 |
+
"key_pattern": "resnet",
|
| 497 |
+
"dim": 4,
|
| 498 |
+
"method": "diff"
|
| 499 |
+
},
|
| 500 |
+
{
|
| 501 |
+
"key_pattern": "all",
|
| 502 |
+
"method": "none"
|
| 503 |
+
}
|
| 504 |
+
]"""
|
| 505 |
+
|
| 506 |
def process_and_upload_fp8(
|
| 507 |
source_type,
|
| 508 |
repo_url,
|
| 509 |
safetensors_filename,
|
| 510 |
fp8_format,
|
| 511 |
+
recovery_rules_json,
|
| 512 |
target_type,
|
| 513 |
new_repo_id,
|
| 514 |
hf_token,
|
|
|
|
| 523 |
if target_type == "huggingface" and not hf_token:
|
| 524 |
return None, "β Hugging Face token required for target.", "", ""
|
| 525 |
|
| 526 |
+
# Parse recovery rules
|
| 527 |
try:
|
| 528 |
+
recovery_rules = json.loads(recovery_rules_json)
|
| 529 |
except json.JSONDecodeError:
|
| 530 |
+
return None, "β Invalid recovery rules JSON.", "", ""
|
| 531 |
|
| 532 |
+
# Validate rules
|
| 533 |
valid_methods = ["none", "lora", "diff"]
|
| 534 |
+
for rule in recovery_rules:
|
| 535 |
+
if "method" not in rule or rule["method"] not in valid_methods:
|
| 536 |
+
return None, f"β Invalid method in rule. Use 'none', 'lora', or 'diff'", "", ""
|
| 537 |
+
if rule["method"] == "lora" and "rank" not in rule:
|
|
|
|
|
|
|
| 538 |
return None, "β LoRA method requires 'rank' parameter", "", ""
|
| 539 |
|
| 540 |
temp_dir = None
|
|
|
|
| 547 |
|
| 548 |
progress(0.2, desc="Converting to FP8 with precision recovery...")
|
| 549 |
success, msg, stats, fp8_path, recovery_path = convert_safetensors_to_fp8_with_recovery(
|
| 550 |
+
safetensors_path, output_dir, fp8_format, recovery_rules, progress
|
| 551 |
)
|
| 552 |
|
| 553 |
if not success:
|
|
|
|
| 572 |
- mixed-method
|
| 573 |
- converted-by-gradio
|
| 574 |
---
|
| 575 |
+
# FP8 Model with Per-Tensor Precision Recovery
|
| 576 |
- **Source**: `{repo_url}`
|
| 577 |
- **Original File**: `{safetensors_filename}`
|
| 578 |
- **FP8 Format**: `{fp8_format.upper()}`
|
| 579 |
- **FP8 File**: `{fp8_filename}`
|
| 580 |
- **Recovery File**: `{recovery_filename if recovery_filename else "None"}`
|
| 581 |
|
| 582 |
+
## Recovery Rules Used
|
| 583 |
```json
|
| 584 |
+
{json.dumps(recovery_rules, indent=2)}
|
| 585 |
```
|
| 586 |
|
| 587 |
## Usage (Inference)
|
|
|
|
| 601 |
fp8_weight = fp8_state[key].to(torch.float32) # Convert to float32 for computation
|
| 602 |
|
| 603 |
# Apply LoRA recovery if available
|
| 604 |
+
lora_a_key = f"lora_A.{{key}}"
|
| 605 |
+
lora_b_key = f"lora_B.{{key}}"
|
| 606 |
+
if lora_a_key in recovery_state and lora_b_key in recovery_state:
|
| 607 |
+
A = recovery_state[lora_a_key].to(torch.float32)
|
| 608 |
+
B = recovery_state[lora_b_key].to(torch.float32)
|
| 609 |
# Reconstruct the low-rank approximation
|
| 610 |
lora_weight = B @ A
|
| 611 |
fp8_weight = fp8_weight + lora_weight
|
| 612 |
|
| 613 |
# Apply difference recovery if available
|
| 614 |
+
diff_key = f"diff.{{key}}"
|
| 615 |
+
if diff_key in recovery_state:
|
| 616 |
+
diff = recovery_state[diff_key].to(torch.float32)
|
| 617 |
fp8_weight = fp8_weight + diff
|
| 618 |
|
| 619 |
reconstructed[key] = fp8_weight
|
|
|
|
| 666 |
recovery_details)
|
| 667 |
|
| 668 |
except Exception as e:
|
| 669 |
+
traceback.print_exc()
|
| 670 |
+
return None, f"β Error: {str(e)}", "", ""
|
|
|
|
| 671 |
|
| 672 |
finally:
|
| 673 |
if temp_dir:
|
| 674 |
shutil.rmtree(temp_dir, ignore_errors=True)
|
| 675 |
shutil.rmtree(output_dir, ignore_errors=True)
|
| 676 |
|
| 677 |
+
with gr.Blocks(title="Advanced FP8 Quantizer with Per-Tensor Precision Recovery") as demo:
|
| 678 |
+
gr.Markdown("# π Advanced FP8 Quantizer with Per-Tensor Precision Recovery")
|
| 679 |
+
gr.Markdown("Convert `.safetensors` β **FP8** + **customizable precision recovery**. Full control over LoRA and difference methods per tensor pattern.")
|
| 680 |
|
| 681 |
with gr.Row():
|
| 682 |
with gr.Column():
|
|
|
|
| 687 |
with gr.Accordion("FP8 Settings", open=True):
|
| 688 |
fp8_format = gr.Radio(["e4m3fn", "e5m2"], value="e5m2", label="FP8 Format")
|
| 689 |
|
| 690 |
+
with gr.Accordion("Per-Tensor Recovery Rules", open=True):
|
| 691 |
gr.Markdown("""
|
| 692 |
+
### Configure recovery strategy for each tensor pattern
|
| 693 |
|
| 694 |
+
Format: JSON array of rule objects:
|
| 695 |
```json
|
| 696 |
[
|
| 697 |
+
{
|
| 698 |
+
"key_pattern": "vae",
|
| 699 |
+
"dim": 4,
|
| 700 |
+
"method": "diff"
|
| 701 |
+
},
|
| 702 |
+
{
|
| 703 |
+
"key_pattern": "attn",
|
| 704 |
+
"dim": 2,
|
| 705 |
+
"min_size": 10000,
|
| 706 |
+
"method": "lora",
|
| 707 |
+
"rank": 64
|
| 708 |
+
},
|
| 709 |
+
{
|
| 710 |
+
"key_pattern": "all",
|
| 711 |
+
"method": "none"
|
| 712 |
+
}
|
| 713 |
]
|
| 714 |
```
|
| 715 |
|
| 716 |
+
### Rule Fields (all optional except "method"):
|
| 717 |
+
- `key_pattern`: Substring to match in weight keys (case-insensitive). Use "all" to match everything.
|
| 718 |
+
- `dim`: Tensor dimension (e.g., 2 for linear layers, 4 for convolutions)
|
| 719 |
+
- `type`: Tensor type ("conv", "linear", "bias", "input_proj", "output_proj")
|
| 720 |
+
- `min_size`: Minimum number of elements in tensor
|
| 721 |
+
- `shape_contains`: Specific dimension size that must be present in shape
|
| 722 |
- `method`: "none" (pure FP8), "lora" (low-rank adaptation), or "diff" (difference/correction)
|
| 723 |
+
- `rank`: Required for "lora" method (higher = better quality but larger file)
|
| 724 |
|
| 725 |
+
**Rules are applied in order** - first match wins. Always end with a catch-all rule.
|
| 726 |
""")
|
| 727 |
|
| 728 |
+
recovery_rules_json = gr.Textbox(
|
| 729 |
+
value=generate_default_rules("all"),
|
| 730 |
+
lines=15,
|
| 731 |
+
label="Recovery Rules (JSON)",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 732 |
interactive=True
|
| 733 |
)
|
| 734 |
+
|
| 735 |
+
architecture_preset = gr.Dropdown(
|
| 736 |
+
choices=[
|
| 737 |
+
("Auto-detect architecture", "auto"),
|
| 738 |
+
("VAE (Difference method)", "vae"),
|
| 739 |
+
("Text Encoder (LoRA)", "text_encoder"),
|
| 740 |
+
("UNet Transformers (LoRA)", "unet_transformer"),
|
| 741 |
+
("UNet Convolutions (Difference)", "unet_conv"),
|
| 742 |
+
("All Components (Mixed)", "all")
|
| 743 |
+
],
|
| 744 |
+
value="auto",
|
| 745 |
+
label="Architecture Preset"
|
| 746 |
+
)
|
| 747 |
+
|
| 748 |
+
architecture_preset.change(
|
| 749 |
+
fn=generate_default_rules,
|
| 750 |
+
inputs=architecture_preset,
|
| 751 |
+
outputs=recovery_rules_json
|
| 752 |
+
)
|
| 753 |
|
| 754 |
with gr.Accordion("Authentication", open=False):
|
| 755 |
hf_token = gr.Textbox(label="Hugging Face Token", type="password")
|
|
|
|
| 774 |
repo_url,
|
| 775 |
safetensors_filename,
|
| 776 |
fp8_format,
|
| 777 |
+
recovery_rules_json,
|
| 778 |
target_type,
|
| 779 |
new_repo_id,
|
| 780 |
hf_token,
|
|
|
|
| 792 |
"https://huggingface.co/stabilityai/sdxl-vae",
|
| 793 |
"diffusion_pytorch_model.safetensors",
|
| 794 |
"e4m3fn",
|
| 795 |
+
generate_default_rules("vae"),
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 796 |
"huggingface"
|
| 797 |
],
|
| 798 |
[
|
|
|
|
| 800 |
"https://huggingface.co/runwayml/stable-diffusion-v1-5/tree/main/text_encoder",
|
| 801 |
"model.safetensors",
|
| 802 |
"e5m2",
|
| 803 |
+
generate_default_rules("text_encoder"),
|
|
|
|
|
|
|
|
|
|
|
|
|
| 804 |
"huggingface"
|
| 805 |
],
|
| 806 |
[
|
|
|
|
| 808 |
"https://huggingface.co/Yabo/FramePainter/tree/main",
|
| 809 |
"unet_diffusion_pytorch_model.safetensors",
|
| 810 |
"e5m2",
|
| 811 |
+
generate_default_rules("unet_transformer"),
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 812 |
"huggingface"
|
| 813 |
]
|
| 814 |
],
|
| 815 |
+
inputs=[source_type, repo_url, safetensors_filename, fp8_format, recovery_rules_json, target_type],
|
| 816 |
+
label="Example Conversions",
|
| 817 |
+
cache_examples=False
|
| 818 |
)
|
| 819 |
|
| 820 |
gr.Markdown("""
|
| 821 |
+
## π‘ Tensor Pattern Matching Guide
|
| 822 |
+
|
| 823 |
+
This tool uses **advanced tensor pattern matching** to determine which recovery method to apply to each layer:
|
| 824 |
+
|
| 825 |
+
### **Key Patterns**
|
| 826 |
+
- Match by substring in weight key name
|
| 827 |
+
- Case-insensitive matching
|
| 828 |
+
- Special keyword "all" matches everything
|
| 829 |
|
| 830 |
+
### **Tensor Properties**
|
| 831 |
+
- **Dimension (dim)**: Use `dim: 2` for linear layers, `dim: 4` for convolutions
|
| 832 |
+
- **Type**: Automatic classification based on shape:
|
| 833 |
+
- `conv`: 4D tensors with equal spatial dimensions
|
| 834 |
+
- `linear`: 2D tensors without extreme aspect ratio
|
| 835 |
+
- `input_proj`: 2D tensors with much larger second dimension
|
| 836 |
+
- `output_proj`: 2D tensors with much larger first dimension
|
| 837 |
+
- `bias`: 1D tensors
|
| 838 |
|
| 839 |
+
### **Size Constraints**
|
| 840 |
+
- **min_size**: Only apply to tensors with at least N elements
|
| 841 |
+
- **shape_contains**: Match tensors containing a specific dimension size
|
|
|
|
|
|
|
| 842 |
|
| 843 |
+
### **Rule Processing**
|
| 844 |
+
- Rules are evaluated **in order**
|
| 845 |
+
- First matching rule wins
|
| 846 |
+
- Always include a catch-all rule at the end
|
| 847 |
|
| 848 |
+
> **Pro Tip for VAE**: Use `"dim": 4` combined with `"key_pattern": "vae"` to reliably target VAE convolutional layers with difference recovery.
|
| 849 |
""")
|
| 850 |
|
| 851 |
demo.launch()
|