Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -8,91 +8,110 @@ import spaces
|
|
| 8 |
import torch
|
| 9 |
from gradio_imageslider import ImageSlider
|
| 10 |
from PIL import Image
|
| 11 |
-
import requests
|
| 12 |
-
import sys
|
| 13 |
-
import subprocess
|
| 14 |
from huggingface_hub import hf_hub_download
|
|
|
|
|
|
|
| 15 |
import tempfile
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 16 |
|
| 17 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 18 |
|
| 19 |
# Setup ComfyUI and custom nodes
|
| 20 |
if not os.path.exists("ComfyUI"):
|
| 21 |
-
subprocess.run(["git", "clone", "https://github.com/comfyanonymous/ComfyUI"])
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
os.
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
mtb_dir = os.path.join(custom_nodes_dir, "comfy_mtb")
|
| 33 |
-
if not os.path.exists(mtb_dir):
|
| 34 |
-
subprocess.run(["git", "clone", "https://github.com/melMass/comfy_mtb", mtb_dir])
|
| 35 |
-
# Install requirements
|
| 36 |
-
if os.path.exists(os.path.join(mtb_dir, "requirements.txt")):
|
| 37 |
-
subprocess.run([sys.executable, "-m", "pip", "install", "-r", "requirements.txt"], cwd=mtb_dir)
|
| 38 |
-
|
| 39 |
-
# Clone KJNodes
|
| 40 |
-
kjn_dir = os.path.join(custom_nodes_dir, "ComfyUI-KJNodes")
|
| 41 |
-
if not os.path.exists(kjn_dir):
|
| 42 |
-
subprocess.run(["git", "clone", "https://github.com/kijai/ComfyUI-KJNodes", kjn_dir])
|
| 43 |
-
# Install requirements
|
| 44 |
-
if os.path.exists(os.path.join(kjn_dir, "requirements.txt")):
|
| 45 |
-
subprocess.run([sys.executable, "-m", "pip", "install", "-r", "requirements.txt"], cwd=kjn_dir)
|
| 46 |
|
| 47 |
# Download models if not present
|
| 48 |
-
|
| 49 |
-
os.
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
os.
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
with open(model_path, "wb") as f:
|
| 79 |
-
f.write(requests.get(url).content)
|
| 80 |
-
|
| 81 |
-
# Add ComfyUI to sys.path
|
| 82 |
-
sys.path.append(os.path.abspath("ComfyUI"))
|
| 83 |
-
|
| 84 |
-
# Import custom nodes
|
| 85 |
-
from nodes import NODE_CLASS_MAPPINGS, init_custom_nodes
|
| 86 |
-
init_custom_nodes()
|
| 87 |
-
|
| 88 |
-
# From the provided script
|
| 89 |
-
def get_value_at_index(obj, index):
|
| 90 |
-
try:
|
| 91 |
-
return obj[index]
|
| 92 |
-
except KeyError:
|
| 93 |
-
return obj["result"][index]
|
| 94 |
|
| 95 |
-
# CSS and constants similar to original
|
| 96 |
css = """
|
| 97 |
#col-container {
|
| 98 |
margin: 0 auto;
|
|
@@ -104,7 +123,6 @@ css = """
|
|
| 104 |
}
|
| 105 |
"""
|
| 106 |
|
| 107 |
-
power_device = "ZeroGPU"
|
| 108 |
MAX_SEED = 1000000
|
| 109 |
MAX_PIXEL_BUDGET = 8192 * 8192
|
| 110 |
|
|
@@ -118,7 +136,7 @@ def process_input(input_image, upscale_factor):
|
|
| 118 |
was_resized = False
|
| 119 |
|
| 120 |
if w * h * upscale_factor**2 > MAX_PIXEL_BUDGET:
|
| 121 |
-
gr.Info("Requested output too large. Resizing input.")
|
| 122 |
target_input_pixels = MAX_PIXEL_BUDGET / (upscale_factor ** 2)
|
| 123 |
scale = (target_input_pixels / (w * h)) ** 0.5
|
| 124 |
new_w = max(16, int(w * scale) // 16 * 16)
|
|
@@ -128,13 +146,19 @@ def process_input(input_image, upscale_factor):
|
|
| 128 |
|
| 129 |
return input_image, w_original, h_original, was_resized
|
| 130 |
|
|
|
|
| 131 |
def load_image_from_url(url):
|
| 132 |
try:
|
| 133 |
response = requests.get(url, stream=True)
|
| 134 |
response.raise_for_status()
|
| 135 |
return Image.open(response.raw)
|
| 136 |
except Exception as e:
|
| 137 |
-
raise gr.Error(f"Failed to load image: {e}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 138 |
|
| 139 |
@spaces.GPU(duration=120)
|
| 140 |
def enhance_image(
|
|
@@ -149,71 +173,73 @@ def enhance_image(
|
|
| 149 |
tile_size,
|
| 150 |
progress=gr.Progress(track_tqdm=True),
|
| 151 |
):
|
| 152 |
-
|
| 153 |
-
|
| 154 |
-
|
| 155 |
-
|
| 156 |
-
|
| 157 |
-
|
| 158 |
-
|
| 159 |
-
|
| 160 |
-
|
| 161 |
-
|
| 162 |
-
|
| 163 |
-
|
| 164 |
-
|
| 165 |
-
|
| 166 |
-
|
| 167 |
-
|
| 168 |
-
os.makedirs(input_dir, exist_ok=True)
|
| 169 |
-
temp_filename = f"input_{random.randint(0, 1000000)}.png"
|
| 170 |
-
input_path = os.path.join(input_dir, temp_filename)
|
| 171 |
-
input_image.save(input_path)
|
| 172 |
-
|
| 173 |
-
# Nodes
|
| 174 |
-
load_image_node = NODE_CLASS_MAPPINGS["LoadImage"]()
|
| 175 |
-
image_loaded = load_image_node.load_image(image=temp_filename)
|
| 176 |
-
image = get_value_at_index(image_loaded, 0)
|
| 177 |
-
|
| 178 |
-
text_multiline = NODE_CLASS_MAPPINGS["Text Multiline"]()
|
| 179 |
-
text_out = text_multiline.text_multiline(text=custom_prompt if custom_prompt.strip() else "")
|
| 180 |
-
prompt_text = get_value_at_index(text_out, 0)
|
| 181 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 182 |
dualcliploader = NODE_CLASS_MAPPINGS["DualCLIPLoader"]()
|
| 183 |
-
|
| 184 |
clip_name1="clip_l.safetensors",
|
| 185 |
clip_name2="t5xxl_fp8_e4m3fn.safetensors",
|
| 186 |
type="flux",
|
| 187 |
)
|
| 188 |
-
clip = get_value_at_index(
|
| 189 |
|
| 190 |
cliptextencode = NODE_CLASS_MAPPINGS["CLIPTextEncode"]()
|
| 191 |
-
|
| 192 |
-
|
| 193 |
-
|
| 194 |
-
|
| 195 |
-
|
| 196 |
-
|
| 197 |
-
|
| 198 |
-
|
| 199 |
-
negative = get_value_at_index(negative_out, 0)
|
| 200 |
|
| 201 |
-
upscale_name = "RealESRGAN_x2.pth" if upscale_factor == 2 else "RealESRGAN_x4.pth"
|
| 202 |
upscalemodelloader = NODE_CLASS_MAPPINGS["UpscaleModelLoader"]()
|
| 203 |
-
|
|
|
|
|
|
|
| 204 |
|
| 205 |
vaeloader = NODE_CLASS_MAPPINGS["VAELoader"]()
|
| 206 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 207 |
|
| 208 |
-
|
| 209 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 210 |
|
| 211 |
ultimatesdupscale = NODE_CLASS_MAPPINGS["UltimateSDUpscale"]()
|
| 212 |
-
|
| 213 |
-
upscale_by=
|
| 214 |
seed=seed,
|
| 215 |
steps=num_inference_steps,
|
| 216 |
-
cfg=1
|
| 217 |
sampler_name="euler",
|
| 218 |
scheduler="normal",
|
| 219 |
denoise=denoising_strength,
|
|
@@ -223,47 +249,45 @@ def enhance_image(
|
|
| 223 |
mask_blur=8,
|
| 224 |
tile_padding=32,
|
| 225 |
seam_fix_mode="None",
|
| 226 |
-
seam_fix_denoise=1
|
| 227 |
seam_fix_width=64,
|
| 228 |
seam_fix_mask_blur=8,
|
| 229 |
seam_fix_padding=16,
|
| 230 |
force_uniform_tiles=True,
|
| 231 |
tiled_decode=False,
|
| 232 |
-
image=
|
| 233 |
-
model=
|
| 234 |
-
positive=
|
| 235 |
-
negative=
|
| 236 |
-
vae=
|
| 237 |
-
upscale_model=
|
| 238 |
)
|
| 239 |
-
upscaled_tensor = get_value_at_index(upscale_out, 0)
|
| 240 |
|
| 241 |
-
|
| 242 |
-
|
| 243 |
|
| 244 |
-
|
| 245 |
-
if upscaled_img.size != (target_w, target_h):
|
| 246 |
-
upscaled_img = upscaled_img.resize((target_w, target_h), resample=Image.LANCZOS)
|
| 247 |
|
| 248 |
-
|
| 249 |
-
|
|
|
|
| 250 |
|
| 251 |
-
|
|
|
|
|
|
|
| 252 |
|
| 253 |
-
|
| 254 |
-
os.remove(input_path)
|
| 255 |
|
| 256 |
-
|
| 257 |
|
| 258 |
-
|
| 259 |
-
with gr.Blocks(css=css, title="🎨 AI Image Upscaler - Flux FP8") as demo:
|
| 260 |
gr.HTML("""
|
| 261 |
<div class="main-header">
|
| 262 |
-
<h1>🎨 AI Image Upscaler
|
| 263 |
-
<p>
|
| 264 |
-
<p>
|
| 265 |
</div>
|
| 266 |
-
"""
|
| 267 |
|
| 268 |
with gr.Row():
|
| 269 |
with gr.Column(scale=1):
|
|
@@ -271,7 +295,11 @@ with gr.Blocks(css=css, title="🎨 AI Image Upscaler - Flux FP8") as demo:
|
|
| 271 |
|
| 272 |
with gr.Tabs():
|
| 273 |
with gr.TabItem("📁 Upload Image"):
|
| 274 |
-
input_image = gr.Image(
|
|
|
|
|
|
|
|
|
|
|
|
|
| 275 |
|
| 276 |
with gr.TabItem("🔗 Image URL"):
|
| 277 |
image_url = gr.Textbox(
|
|
@@ -295,15 +323,17 @@ with gr.Blocks(css=css, title="🎨 AI Image Upscaler - Flux FP8") as demo:
|
|
| 295 |
minimum=1,
|
| 296 |
maximum=4,
|
| 297 |
step=1,
|
| 298 |
-
value=2
|
|
|
|
| 299 |
)
|
| 300 |
|
| 301 |
num_inference_steps = gr.Slider(
|
| 302 |
-
label="Inference Steps",
|
| 303 |
minimum=1,
|
| 304 |
maximum=50,
|
| 305 |
step=1,
|
| 306 |
-
value=25
|
|
|
|
| 307 |
)
|
| 308 |
|
| 309 |
denoising_strength = gr.Slider(
|
|
@@ -311,7 +341,8 @@ with gr.Blocks(css=css, title="🎨 AI Image Upscaler - Flux FP8") as demo:
|
|
| 311 |
minimum=0.0,
|
| 312 |
maximum=1.0,
|
| 313 |
step=0.05,
|
| 314 |
-
value=0.3
|
|
|
|
| 315 |
)
|
| 316 |
|
| 317 |
tile_size = gr.Slider(
|
|
@@ -319,19 +350,40 @@ with gr.Blocks(css=css, title="🎨 AI Image Upscaler - Flux FP8") as demo:
|
|
| 319 |
minimum=256,
|
| 320 |
maximum=2048,
|
| 321 |
step=64,
|
| 322 |
-
value=1024
|
|
|
|
| 323 |
)
|
| 324 |
|
| 325 |
with gr.Row():
|
| 326 |
-
randomize_seed = gr.Checkbox(
|
| 327 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 328 |
|
| 329 |
-
enhance_btn = gr.Button(
|
|
|
|
|
|
|
|
|
|
|
|
|
| 330 |
|
| 331 |
with gr.Column(scale=2):
|
| 332 |
gr.HTML("<h3>📊 Results</h3>")
|
| 333 |
|
| 334 |
-
result_slider = ImageSlider(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 335 |
|
| 336 |
enhance_btn.click(
|
| 337 |
fn=enhance_image,
|
|
@@ -351,18 +403,63 @@ with gr.Blocks(css=css, title="🎨 AI Image Upscaler - Flux FP8") as demo:
|
|
| 351 |
|
| 352 |
gr.HTML("""
|
| 353 |
<div style="margin-top: 2rem; padding: 1rem; background: #f0f0f0; border-radius: 8px;">
|
| 354 |
-
<p><strong>Note:</strong>
|
| 355 |
</div>
|
| 356 |
""")
|
| 357 |
|
| 358 |
gr.HTML("""
|
| 359 |
<style>
|
| 360 |
-
#result_slider .slider {
|
| 361 |
-
|
| 362 |
-
|
| 363 |
-
|
| 364 |
-
#result_slider
|
| 365 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 366 |
</style>
|
| 367 |
""")
|
| 368 |
|
|
@@ -370,7 +467,10 @@ with gr.Blocks(css=css, title="🎨 AI Image Upscaler - Flux FP8") as demo:
|
|
| 370 |
<script>
|
| 371 |
document.addEventListener('DOMContentLoaded', function() {
|
| 372 |
const sliderInput = document.querySelector('#result_slider input[type="range"]');
|
| 373 |
-
if (sliderInput) {
|
|
|
|
|
|
|
|
|
|
| 374 |
});
|
| 375 |
</script>
|
| 376 |
""")
|
|
|
|
| 8 |
import torch
|
| 9 |
from gradio_imageslider import ImageSlider
|
| 10 |
from PIL import Image
|
|
|
|
|
|
|
|
|
|
| 11 |
from huggingface_hub import hf_hub_download
|
| 12 |
+
import subprocess
|
| 13 |
+
import sys
|
| 14 |
import tempfile
|
| 15 |
+
from typing import Sequence, Mapping, Any, Union
|
| 16 |
+
import asyncio
|
| 17 |
+
import execution
|
| 18 |
+
from nodes import init_extra_nodes
|
| 19 |
+
import server
|
| 20 |
+
|
| 21 |
+
# Copy functions from FluxSimpleUpscaler.txt
|
| 22 |
+
def get_value_at_index(obj: Union[Sequence, Mapping], index: int) -> Any:
|
| 23 |
+
try:
|
| 24 |
+
return obj[index]
|
| 25 |
+
except KeyError:
|
| 26 |
+
return obj["result"][index]
|
| 27 |
|
| 28 |
+
def find_path(name: str, path: str = None) -> str:
|
| 29 |
+
if path is None:
|
| 30 |
+
path = os.getcwd()
|
| 31 |
+
if name in os.listdir(path):
|
| 32 |
+
path_name = os.path.join(path, name)
|
| 33 |
+
print(f"{name} found: {path_name}")
|
| 34 |
+
return path_name
|
| 35 |
+
parent_directory = os.path.dirname(path)
|
| 36 |
+
if parent_directory == path:
|
| 37 |
+
return None
|
| 38 |
+
return find_path(name, parent_directory)
|
| 39 |
+
|
| 40 |
+
def add_comfyui_directory_to_sys_path() -> None:
|
| 41 |
+
comfyui_path = find_path("ComfyUI")
|
| 42 |
+
if comfyui_path is not None and os.path.isdir(comfyui_path):
|
| 43 |
+
sys.path.append(comfyui_path)
|
| 44 |
+
print(f"'{comfyui_path}' added to sys.path")
|
| 45 |
+
|
| 46 |
+
def add_extra_model_paths() -> None:
|
| 47 |
+
try:
|
| 48 |
+
from main import load_extra_path_config
|
| 49 |
+
except ImportError:
|
| 50 |
+
print("Could not import load_extra_path_config from main.py. Looking in utils.extra_config instead.")
|
| 51 |
+
from utils.extra_config import load_extra_path_config
|
| 52 |
+
extra_model_paths = find_path("extra_model_paths.yaml")
|
| 53 |
+
if extra_model_paths is not None:
|
| 54 |
+
load_extra_path_config(extra_model_paths)
|
| 55 |
+
else:
|
| 56 |
+
print("Could not find the extra_model_paths config file.")
|
| 57 |
+
|
| 58 |
+
def import_custom_nodes() -> None:
|
| 59 |
+
import asyncio
|
| 60 |
+
import execution
|
| 61 |
+
from nodes import init_extra_nodes
|
| 62 |
+
import server
|
| 63 |
+
loop = asyncio.new_event_loop()
|
| 64 |
+
asyncio.set_event_loop(loop)
|
| 65 |
+
server_instance = server.PromptServer(loop)
|
| 66 |
+
execution.PromptQueue(server_instance)
|
| 67 |
+
init_extra_nodes()
|
| 68 |
|
| 69 |
# Setup ComfyUI and custom nodes
|
| 70 |
if not os.path.exists("ComfyUI"):
|
| 71 |
+
subprocess.run(["git", "clone", "https://github.com/comfyanonymous/ComfyUI.git"])
|
| 72 |
+
|
| 73 |
+
custom_node_path = "ComfyUI/custom_nodes/ComfyUI_UltimateSDUpscale"
|
| 74 |
+
if not os.path.exists(custom_node_path):
|
| 75 |
+
subprocess.run(["git", "clone", "https://github.com/ssitu/ComfyUI_UltimateSDUpscale.git", custom_node_path])
|
| 76 |
+
|
| 77 |
+
# Create model directories
|
| 78 |
+
os.makedirs("ComfyUI/models/unet", exist_ok=True)
|
| 79 |
+
os.makedirs("ComfyUI/models/clip", exist_ok=True)
|
| 80 |
+
os.makedirs("ComfyUI/models/vae", exist_ok=True)
|
| 81 |
+
os.makedirs("ComfyUI/models/upscale_models", exist_ok=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 82 |
|
| 83 |
# Download models if not present
|
| 84 |
+
unet_path = "ComfyUI/models/unet/flux1-dev-fp8.safetensors"
|
| 85 |
+
if not os.path.exists(unet_path):
|
| 86 |
+
hf_hub_download("Kijai/flux-fp8", "flux1-dev-fp8.safetensors", local_dir="ComfyUI/models/unet")
|
| 87 |
+
|
| 88 |
+
clip_l_path = "ComfyUI/models/clip/clip_l.safetensors"
|
| 89 |
+
if not os.path.exists(clip_l_path):
|
| 90 |
+
hf_hub_download("comfyanonymous/flux_text_encoders", "clip_l.safetensors", local_dir="ComfyUI/models/clip")
|
| 91 |
+
|
| 92 |
+
t5_path = "ComfyUI/models/clip/t5xxl_fp8_e4m3fn.safetensors"
|
| 93 |
+
if not os.path.exists(t5_path):
|
| 94 |
+
hf_hub_download("comfyanonymous/flux_text_encoders", "t5xxl_fp8_e4m3fn.safetensors", local_dir="ComfyUI/models/clip")
|
| 95 |
+
|
| 96 |
+
vae_path = "ComfyUI/models/vae/ae.safetensors"
|
| 97 |
+
if not os.path.exists(vae_path):
|
| 98 |
+
hf_hub_download("black-forest-labs/FLUX.1-dev", "ae.safetensors", subfolder="vae", local_dir="ComfyUI/models/vae")
|
| 99 |
+
|
| 100 |
+
esrgan_x2_path = "ComfyUI/models/upscale_models/RealESRGAN_x2.pth"
|
| 101 |
+
if not os.path.exists(esrgan_x2_path):
|
| 102 |
+
hf_hub_download("ai-forever/Real-ESRGAN", "RealESRGAN_x2.pth", local_dir="ComfyUI/models/upscale_models")
|
| 103 |
+
|
| 104 |
+
esrgan_x4_path = "ComfyUI/models/upscale_models/RealESRGAN_x4.pth"
|
| 105 |
+
if not os.path.exists(esrgan_x4_path):
|
| 106 |
+
hf_hub_download("ai-forever/Real-ESRGAN", "RealESRGAN_x4.pth", local_dir="ComfyUI/models/upscale_models")
|
| 107 |
+
|
| 108 |
+
# Add ComfyUI to path and import custom nodes
|
| 109 |
+
add_comfyui_directory_to_sys_path()
|
| 110 |
+
add_extra_model_paths()
|
| 111 |
+
import_custom_nodes()
|
| 112 |
+
|
| 113 |
+
from nodes import NODE_CLASS_MAPPINGS
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 114 |
|
|
|
|
| 115 |
css = """
|
| 116 |
#col-container {
|
| 117 |
margin: 0 auto;
|
|
|
|
| 123 |
}
|
| 124 |
"""
|
| 125 |
|
|
|
|
| 126 |
MAX_SEED = 1000000
|
| 127 |
MAX_PIXEL_BUDGET = 8192 * 8192
|
| 128 |
|
|
|
|
| 136 |
was_resized = False
|
| 137 |
|
| 138 |
if w * h * upscale_factor**2 > MAX_PIXEL_BUDGET:
|
| 139 |
+
gr.Info(f"Requested output image is too large. Resizing input to fit within pixel budget.")
|
| 140 |
target_input_pixels = MAX_PIXEL_BUDGET / (upscale_factor ** 2)
|
| 141 |
scale = (target_input_pixels / (w * h)) ** 0.5
|
| 142 |
new_w = max(16, int(w * scale) // 16 * 16)
|
|
|
|
| 146 |
|
| 147 |
return input_image, w_original, h_original, was_resized
|
| 148 |
|
| 149 |
+
import requests
|
| 150 |
def load_image_from_url(url):
|
| 151 |
try:
|
| 152 |
response = requests.get(url, stream=True)
|
| 153 |
response.raise_for_status()
|
| 154 |
return Image.open(response.raw)
|
| 155 |
except Exception as e:
|
| 156 |
+
raise gr.Error(f"Failed to load image from URL: {e}")
|
| 157 |
+
|
| 158 |
+
def tensor_to_pil(tensor):
|
| 159 |
+
tensor = tensor.cpu().clamp(0, 1) * 255
|
| 160 |
+
img = tensor.numpy().astype(np.uint8)[0]
|
| 161 |
+
return Image.fromarray(img)
|
| 162 |
|
| 163 |
@spaces.GPU(duration=120)
|
| 164 |
def enhance_image(
|
|
|
|
| 173 |
tile_size,
|
| 174 |
progress=gr.Progress(track_tqdm=True),
|
| 175 |
):
|
| 176 |
+
if image_input is not None:
|
| 177 |
+
true_input_image = image_input
|
| 178 |
+
elif image_url:
|
| 179 |
+
true_input_image = load_image_from_url(image_url)
|
| 180 |
+
else:
|
| 181 |
+
raise gr.Error("Please provide an image (upload or URL)")
|
| 182 |
+
|
| 183 |
+
if randomize_seed:
|
| 184 |
+
seed = random.randint(0, MAX_SEED)
|
| 185 |
+
|
| 186 |
+
input_image, w_original, h_original, was_resized = process_input(true_input_image, upscale_factor)
|
| 187 |
+
|
| 188 |
+
if upscale_factor == 2:
|
| 189 |
+
upscale_model_name = "RealESRGAN_x2.pth"
|
| 190 |
+
else:
|
| 191 |
+
upscale_model_name = "RealESRGAN_x4.pth"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 192 |
|
| 193 |
+
with tempfile.NamedTemporaryFile(suffix=".png", delete=False) as tmp:
|
| 194 |
+
input_image.save(tmp.name)
|
| 195 |
+
image_path = tmp.name
|
| 196 |
+
|
| 197 |
+
with torch.inference_mode():
|
| 198 |
dualcliploader = NODE_CLASS_MAPPINGS["DualCLIPLoader"]()
|
| 199 |
+
dualcliploader_res = dualcliploader.load_clip(
|
| 200 |
clip_name1="clip_l.safetensors",
|
| 201 |
clip_name2="t5xxl_fp8_e4m3fn.safetensors",
|
| 202 |
type="flux",
|
| 203 |
)
|
| 204 |
+
clip = get_value_at_index(dualcliploader_res, 0)
|
| 205 |
|
| 206 |
cliptextencode = NODE_CLASS_MAPPINGS["CLIPTextEncode"]()
|
| 207 |
+
positive_res = cliptextencode.encode(
|
| 208 |
+
text=custom_prompt,
|
| 209 |
+
clip=clip
|
| 210 |
+
)
|
| 211 |
+
negative_res = cliptextencode.encode(
|
| 212 |
+
text="",
|
| 213 |
+
clip=clip
|
| 214 |
+
)
|
|
|
|
| 215 |
|
|
|
|
| 216 |
upscalemodelloader = NODE_CLASS_MAPPINGS["UpscaleModelLoader"]()
|
| 217 |
+
upscalemodelloader_res = upscalemodelloader.load_model(
|
| 218 |
+
model_name=upscale_model_name
|
| 219 |
+
)
|
| 220 |
|
| 221 |
vaeloader = NODE_CLASS_MAPPINGS["VAELoader"]()
|
| 222 |
+
vaeloader_res = vaeloader.load_vae(vae_name="ae.safetensors")
|
| 223 |
+
|
| 224 |
+
unetloader = NODE_CLASS_MAPPINGS["UNETLoader"]()
|
| 225 |
+
unetloader_res = unetloader.load_unet(
|
| 226 |
+
unet_name="flux1-dev-fp8.safetensors", weight_dtype="fp8_e4m3fn"
|
| 227 |
+
)
|
| 228 |
|
| 229 |
+
loadimage = NODE_CLASS_MAPPINGS["LoadImage"]()
|
| 230 |
+
loadimage_res = loadimage.load_image(image=os.path.basename(image_path))
|
| 231 |
+
|
| 232 |
+
fluxguidance = NODE_CLASS_MAPPINGS["FluxGuidance"]()
|
| 233 |
+
fluxguidance_res = fluxguidance.append(
|
| 234 |
+
guidance=30, conditioning=get_value_at_index(positive_res, 0)
|
| 235 |
+
)
|
| 236 |
|
| 237 |
ultimatesdupscale = NODE_CLASS_MAPPINGS["UltimateSDUpscale"]()
|
| 238 |
+
usd_res = ultimatesdupscale.upscale(
|
| 239 |
+
upscale_by=upscale_factor,
|
| 240 |
seed=seed,
|
| 241 |
steps=num_inference_steps,
|
| 242 |
+
cfg=1,
|
| 243 |
sampler_name="euler",
|
| 244 |
scheduler="normal",
|
| 245 |
denoise=denoising_strength,
|
|
|
|
| 249 |
mask_blur=8,
|
| 250 |
tile_padding=32,
|
| 251 |
seam_fix_mode="None",
|
| 252 |
+
seam_fix_denoise=1,
|
| 253 |
seam_fix_width=64,
|
| 254 |
seam_fix_mask_blur=8,
|
| 255 |
seam_fix_padding=16,
|
| 256 |
force_uniform_tiles=True,
|
| 257 |
tiled_decode=False,
|
| 258 |
+
image=get_value_at_index(loadimage_res, 0),
|
| 259 |
+
model=get_value_at_index(unetloader_res, 0),
|
| 260 |
+
positive=get_value_at_index(fluxguidance_res, 0),
|
| 261 |
+
negative=get_value_at_index(negative_res, 0),
|
| 262 |
+
vae=get_value_at_index(vaeloader_res, 0),
|
| 263 |
+
upscale_model=get_value_at_index(upscalemodelloader_res, 0),
|
| 264 |
)
|
|
|
|
| 265 |
|
| 266 |
+
output_tensor = get_value_at_index(usd_res, 0)
|
| 267 |
+
image = tensor_to_pil(output_tensor)
|
| 268 |
|
| 269 |
+
os.unlink(image_path)
|
|
|
|
|
|
|
| 270 |
|
| 271 |
+
target_w, target_h = w_original * upscale_factor, h_original * upscale_factor
|
| 272 |
+
if image.size != (target_w, target_h):
|
| 273 |
+
image = image.resize((target_w, target_h), resample=Image.LANCZOS)
|
| 274 |
|
| 275 |
+
if was_resized:
|
| 276 |
+
gr.Info(f"Resizing output to target size: {target_w}x{target_h}")
|
| 277 |
+
image = image.resize((target_w, target_h), resample=Image.LANCZOS)
|
| 278 |
|
| 279 |
+
resized_input = true_input_image.resize(image.size, resample=Image.LANCZOS)
|
|
|
|
| 280 |
|
| 281 |
+
return [resized_input, image]
|
| 282 |
|
| 283 |
+
with gr.Blocks(css=css, title="🎨 AI Image Upscaler - FLUX ComfyUI") as demo:
|
|
|
|
| 284 |
gr.HTML("""
|
| 285 |
<div class="main-header">
|
| 286 |
+
<h1>🎨 AI Image Upscaler (ComfyUI Workflow)</h1>
|
| 287 |
+
<p>Upload an image or provide a URL to upscale it using FLUX FP8 with ComfyUI Ultimate SD Upscale</p>
|
| 288 |
+
<p>Using FLUX.1-dev FP8 model</p>
|
| 289 |
</div>
|
| 290 |
+
""")
|
| 291 |
|
| 292 |
with gr.Row():
|
| 293 |
with gr.Column(scale=1):
|
|
|
|
| 295 |
|
| 296 |
with gr.Tabs():
|
| 297 |
with gr.TabItem("📁 Upload Image"):
|
| 298 |
+
input_image = gr.Image(
|
| 299 |
+
label="Upload Image",
|
| 300 |
+
type="pil",
|
| 301 |
+
height=200
|
| 302 |
+
)
|
| 303 |
|
| 304 |
with gr.TabItem("🔗 Image URL"):
|
| 305 |
image_url = gr.Textbox(
|
|
|
|
| 323 |
minimum=1,
|
| 324 |
maximum=4,
|
| 325 |
step=1,
|
| 326 |
+
value=2,
|
| 327 |
+
info="How much to upscale the image"
|
| 328 |
)
|
| 329 |
|
| 330 |
num_inference_steps = gr.Slider(
|
| 331 |
+
label="Number of Inference Steps",
|
| 332 |
minimum=1,
|
| 333 |
maximum=50,
|
| 334 |
step=1,
|
| 335 |
+
value=25,
|
| 336 |
+
info="More steps = better quality but slower"
|
| 337 |
)
|
| 338 |
|
| 339 |
denoising_strength = gr.Slider(
|
|
|
|
| 341 |
minimum=0.0,
|
| 342 |
maximum=1.0,
|
| 343 |
step=0.05,
|
| 344 |
+
value=0.3,
|
| 345 |
+
info="Controls how much the image is transformed"
|
| 346 |
)
|
| 347 |
|
| 348 |
tile_size = gr.Slider(
|
|
|
|
| 350 |
minimum=256,
|
| 351 |
maximum=2048,
|
| 352 |
step=64,
|
| 353 |
+
value=1024,
|
| 354 |
+
info="Size of tiles for processing (larger = faster but more memory)"
|
| 355 |
)
|
| 356 |
|
| 357 |
with gr.Row():
|
| 358 |
+
randomize_seed = gr.Checkbox(
|
| 359 |
+
label="Randomize seed",
|
| 360 |
+
value=True
|
| 361 |
+
)
|
| 362 |
+
seed = gr.Slider(
|
| 363 |
+
label="Seed",
|
| 364 |
+
minimum=0,
|
| 365 |
+
maximum=MAX_SEED,
|
| 366 |
+
step=1,
|
| 367 |
+
value=42,
|
| 368 |
+
interactive=True
|
| 369 |
+
)
|
| 370 |
|
| 371 |
+
enhance_btn = gr.Button(
|
| 372 |
+
"🚀 Upscale Image",
|
| 373 |
+
variant="primary",
|
| 374 |
+
size="lg"
|
| 375 |
+
)
|
| 376 |
|
| 377 |
with gr.Column(scale=2):
|
| 378 |
gr.HTML("<h3>📊 Results</h3>")
|
| 379 |
|
| 380 |
+
result_slider = ImageSlider(
|
| 381 |
+
type="pil",
|
| 382 |
+
interactive=False,
|
| 383 |
+
height=600,
|
| 384 |
+
elem_id="result_slider",
|
| 385 |
+
label=None
|
| 386 |
+
)
|
| 387 |
|
| 388 |
enhance_btn.click(
|
| 389 |
fn=enhance_image,
|
|
|
|
| 403 |
|
| 404 |
gr.HTML("""
|
| 405 |
<div style="margin-top: 2rem; padding: 1rem; background: #f0f0f0; border-radius: 8px;">
|
| 406 |
+
<p><strong>Note:</strong> This upscaler uses the Flux.1-dev model. Users are responsible for obtaining commercial rights if used commercially under their license.</p>
|
| 407 |
</div>
|
| 408 |
""")
|
| 409 |
|
| 410 |
gr.HTML("""
|
| 411 |
<style>
|
| 412 |
+
#result_slider .slider {
|
| 413 |
+
width: 100% !important;
|
| 414 |
+
max-width: inherit !important;
|
| 415 |
+
}
|
| 416 |
+
#result_slider img {
|
| 417 |
+
object-fit: contain !important;
|
| 418 |
+
width: 100% !important;
|
| 419 |
+
height: auto !important;
|
| 420 |
+
}
|
| 421 |
+
#result_slider .gr-button-tool {
|
| 422 |
+
display: none !important;
|
| 423 |
+
}
|
| 424 |
+
#result_slider .gr-button-undo {
|
| 425 |
+
display: none !important;
|
| 426 |
+
}
|
| 427 |
+
#result_slider .gr-button-clear {
|
| 428 |
+
display: none !important;
|
| 429 |
+
}
|
| 430 |
+
#result_slider .badge-container .badge {
|
| 431 |
+
display: none !important;
|
| 432 |
+
}
|
| 433 |
+
#result_slider .badge-container::before {
|
| 434 |
+
content: "Before";
|
| 435 |
+
position: absolute;
|
| 436 |
+
top: 10px;
|
| 437 |
+
left: 10px;
|
| 438 |
+
background: rgba(0,0,0,0.5);
|
| 439 |
+
color: white;
|
| 440 |
+
padding: 5px;
|
| 441 |
+
border-radius: 5px;
|
| 442 |
+
z-index: 10;
|
| 443 |
+
}
|
| 444 |
+
#result_slider .badge-container::after {
|
| 445 |
+
content: "After";
|
| 446 |
+
position: absolute;
|
| 447 |
+
top: 10px;
|
| 448 |
+
right: 10px;
|
| 449 |
+
background: rgba(0,0,0,0.5);
|
| 450 |
+
color: white;
|
| 451 |
+
padding: 5px;
|
| 452 |
+
border-radius: 5px;
|
| 453 |
+
z-index: 10;
|
| 454 |
+
}
|
| 455 |
+
#result_slider .fullscreen img {
|
| 456 |
+
object-fit: contain !important;
|
| 457 |
+
width: 100vw !important;
|
| 458 |
+
height: 100vh !important;
|
| 459 |
+
position: absolute;
|
| 460 |
+
top: 0;
|
| 461 |
+
left: 0;
|
| 462 |
+
}
|
| 463 |
</style>
|
| 464 |
""")
|
| 465 |
|
|
|
|
| 467 |
<script>
|
| 468 |
document.addEventListener('DOMContentLoaded', function() {
|
| 469 |
const sliderInput = document.querySelector('#result_slider input[type="range"]');
|
| 470 |
+
if (sliderInput) {
|
| 471 |
+
sliderInput.value = 50;
|
| 472 |
+
sliderInput.dispatchEvent(new Event('input'));
|
| 473 |
+
}
|
| 474 |
});
|
| 475 |
</script>
|
| 476 |
""")
|