Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,491 +1,207 @@
|
|
| 1 |
-
import logging
|
| 2 |
-
import random
|
| 3 |
import warnings
|
| 4 |
-
import os
|
| 5 |
import gradio as gr
|
| 6 |
-
import numpy as np
|
| 7 |
-
import spaces
|
| 8 |
import torch
|
| 9 |
-
from diffusers import FluxImg2ImgPipeline
|
| 10 |
-
from transformers import AutoProcessor, AutoModelForCausalLM
|
| 11 |
-
from gradio_imageslider import ImageSlider
|
| 12 |
from PIL import Image
|
| 13 |
-
from
|
| 14 |
-
import
|
|
|
|
|
|
|
|
|
|
|
|
|
| 15 |
|
| 16 |
-
# For ESRGAN (requires pip install basicsr gfpgan)
|
| 17 |
try:
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
except ImportError:
|
| 22 |
-
USE_ESRGAN = False
|
| 23 |
warnings.warn("basicsr not installed; falling back to LANCZOS interpolation.")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 24 |
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
max-width: 800px;
|
| 29 |
-
}
|
| 30 |
-
.main-header {
|
| 31 |
-
text-align: center;
|
| 32 |
-
margin-bottom: 2rem;
|
| 33 |
-
}
|
| 34 |
-
"""
|
| 35 |
-
|
| 36 |
-
# Device setup - Force CPU for startup in ZeroGPU
|
| 37 |
-
power_device = "ZeroGPU"
|
| 38 |
-
device = "cpu"
|
| 39 |
-
|
| 40 |
-
# Get HuggingFace token
|
| 41 |
-
huggingface_token = os.getenv("HF_TOKEN")
|
| 42 |
-
|
| 43 |
-
# Download FLUX model
|
| 44 |
-
print("📥 Downloading FLUX model...")
|
| 45 |
-
model_path = snapshot_download(
|
| 46 |
-
repo_id="black-forest-labs/FLUX.1-dev",
|
| 47 |
-
repo_type="model",
|
| 48 |
-
ignore_patterns=["*.md", "*.gitattributes"],
|
| 49 |
-
local_dir="FLUX.1-dev",
|
| 50 |
-
token=huggingface_token,
|
| 51 |
-
)
|
| 52 |
-
|
| 53 |
-
# Load Florence-2 model for image captioning on CPU
|
| 54 |
-
print("📥 Loading Florence-2 model...")
|
| 55 |
-
florence_model = AutoModelForCausalLM.from_pretrained(
|
| 56 |
-
"microsoft/Florence-2-large",
|
| 57 |
-
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
|
| 58 |
trust_remote_code=True,
|
| 59 |
-
|
| 60 |
-
).to(device)
|
| 61 |
florence_processor = AutoProcessor.from_pretrained(
|
| 62 |
-
|
| 63 |
trust_remote_code=True
|
| 64 |
)
|
| 65 |
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
)
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
with open(esrgan_path, "wb") as f:
|
| 83 |
-
f.write(requests.get(url).content)
|
| 84 |
-
esrgan_model = RRDBNet(num_in_ch=3, num_out_ch=3, num_feat=64, num_block=23, num_grow_ch=32, scale=4)
|
| 85 |
-
state_dict = torch.load(esrgan_path)['params_ema']
|
| 86 |
-
esrgan_model.load_state_dict(state_dict)
|
| 87 |
-
esrgan_model.eval()
|
| 88 |
-
|
| 89 |
-
MAX_SEED = 1000000
|
| 90 |
-
MAX_PIXEL_BUDGET = 8192 * 8192 # Increased for tiling support
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
def generate_caption(image):
|
| 94 |
-
"""Generate detailed caption using Florence-2"""
|
| 95 |
-
try:
|
| 96 |
-
task_prompt = "<MORE_DETAILED_CAPTION>"
|
| 97 |
-
prompt = task_prompt
|
| 98 |
-
|
| 99 |
-
inputs = florence_processor(text=prompt, images=image, return_tensors="pt").to(florence_model.device) # Fixed: Use model's current device instead of static 'device'
|
| 100 |
-
|
| 101 |
-
generated_ids = florence_model.generate(
|
| 102 |
-
input_ids=inputs["input_ids"],
|
| 103 |
-
pixel_values=inputs["pixel_values"],
|
| 104 |
-
max_new_tokens=1024,
|
| 105 |
-
num_beams=3,
|
| 106 |
-
do_sample=True,
|
| 107 |
-
)
|
| 108 |
-
|
| 109 |
-
generated_text = florence_processor.batch_decode(generated_ids, skip_special_tokens=False)[0]
|
| 110 |
-
parsed_answer = florence_processor.post_process_generation(generated_text, task=task_prompt, image_size=(image.width, image.height))
|
| 111 |
-
|
| 112 |
-
caption = parsed_answer[task_prompt]
|
| 113 |
-
return caption
|
| 114 |
-
except Exception as e:
|
| 115 |
-
print(f"Caption generation failed: {e}")
|
| 116 |
-
return "a high quality detailed image"
|
| 117 |
-
|
| 118 |
-
|
| 119 |
-
def process_input(input_image, upscale_factor):
|
| 120 |
-
"""Process input image and handle size constraints"""
|
| 121 |
-
w, h = input_image.size
|
| 122 |
-
w_original, h_original = w, h
|
| 123 |
-
aspect_ratio = w / h
|
| 124 |
-
|
| 125 |
-
was_resized = False
|
| 126 |
-
|
| 127 |
-
if w * h * upscale_factor**2 > MAX_PIXEL_BUDGET:
|
| 128 |
-
warnings.warn(
|
| 129 |
-
f"Requested output image is too large ({w * upscale_factor}x{h * upscale_factor}). Resizing to fit budget."
|
| 130 |
-
)
|
| 131 |
-
gr.Info(
|
| 132 |
-
f"Requested output image is too large. Resizing input to fit within pixel budget."
|
| 133 |
-
)
|
| 134 |
-
target_input_pixels = MAX_PIXEL_BUDGET / (upscale_factor ** 2)
|
| 135 |
-
scale = (target_input_pixels / (w * h)) ** 0.5
|
| 136 |
-
new_w = int(w * scale) - int(w * scale) % 16 # Fixed: Use % 16 for FLUX alignment (was % 8)
|
| 137 |
-
new_h = int(h * scale) - int(h * scale) % 16 # Fixed: Use % 16 for FLUX alignment (was % 8)
|
| 138 |
-
input_image = input_image.resize((new_w, new_h), resample=Image.LANCZOS)
|
| 139 |
-
was_resized = True
|
| 140 |
-
|
| 141 |
-
return input_image, w_original, h_original, was_resized
|
| 142 |
-
|
| 143 |
-
|
| 144 |
-
def load_image_from_url(url):
|
| 145 |
-
"""Load image from URL"""
|
| 146 |
-
try:
|
| 147 |
-
response = requests.get(url, stream=True)
|
| 148 |
-
response.raise_for_status()
|
| 149 |
-
return Image.open(response.raw)
|
| 150 |
-
except Exception as e:
|
| 151 |
-
raise gr.Error(f"Failed to load image from URL: {e}")
|
| 152 |
-
|
| 153 |
-
|
| 154 |
-
def esrgan_upscale(image, scale=4):
|
| 155 |
-
if not USE_ESRGAN:
|
| 156 |
-
return image.resize((image.width * scale, image.height * scale), resample=Image.LANCZOS)
|
| 157 |
-
img = img2tensor(np.array(image) / 255., bgr2rgb=False, float32=True)
|
| 158 |
-
with torch.no_grad():
|
| 159 |
-
output = esrgan_model(img.unsqueeze(0)).squeeze()
|
| 160 |
-
output_img = tensor2img(output, rgb2bgr=False, min_max=(0, 1))
|
| 161 |
-
return Image.fromarray(output_img)
|
| 162 |
-
|
| 163 |
-
|
| 164 |
-
def tiled_flux_img2img(pipe, prompt, image, strength, steps, guidance, generator, tile_size=1024, overlap=32):
|
| 165 |
-
"""Tiled Img2Img to mimic Ultimate SD Upscaler tiling"""
|
| 166 |
-
w, h = image.size
|
| 167 |
-
output = image.copy() # Start with the control image
|
| 168 |
-
|
| 169 |
-
for x in range(0, w, tile_size - overlap):
|
| 170 |
-
for y in range(0, h, tile_size - overlap):
|
| 171 |
-
tile_w = min(tile_size, w - x)
|
| 172 |
-
tile_h = min(tile_size, h - y)
|
| 173 |
-
tile = image.crop((x, y, x + tile_w, y + tile_h))
|
| 174 |
-
|
| 175 |
-
# Run Flux on tile
|
| 176 |
-
gen_tile = pipe(
|
| 177 |
-
prompt=prompt,
|
| 178 |
-
image=tile,
|
| 179 |
-
strength=strength,
|
| 180 |
-
num_inference_steps=steps,
|
| 181 |
-
guidance_scale=guidance,
|
| 182 |
-
height=tile_h,
|
| 183 |
-
width=tile_w,
|
| 184 |
-
generator=generator,
|
| 185 |
-
).images[0]
|
| 186 |
-
|
| 187 |
-
# Fixed: Resize generated tile back to exact tile dimensions if pipeline auto-resized for multiple-of-16 requirement
|
| 188 |
-
gen_tile = gen_tile.resize((tile_w, tile_h), resample=Image.LANCZOS)
|
| 189 |
-
|
| 190 |
-
# Paste with blending if overlap
|
| 191 |
-
if overlap > 0:
|
| 192 |
-
paste_box = (x, y, x + tile_w, y + tile_h)
|
| 193 |
-
if x > 0 or y > 0:
|
| 194 |
-
# Simple linear blend on overlaps
|
| 195 |
-
mask = Image.new('L', (tile_w, tile_h), 255)
|
| 196 |
-
if x > 0:
|
| 197 |
-
for i in range(overlap):
|
| 198 |
-
for j in range(tile_h):
|
| 199 |
-
mask.putpixel((i, j), int(255 * (i / overlap)))
|
| 200 |
-
if y > 0:
|
| 201 |
-
for i in range(tile_w):
|
| 202 |
-
for j in range(overlap):
|
| 203 |
-
mask.putpixel((i, j), int(255 * (j / overlap)))
|
| 204 |
-
output.paste(gen_tile, paste_box, mask)
|
| 205 |
-
else:
|
| 206 |
-
output.paste(gen_tile, paste_box)
|
| 207 |
-
else:
|
| 208 |
-
output.paste(gen_tile, (x, y))
|
| 209 |
-
|
| 210 |
-
return output
|
| 211 |
-
|
| 212 |
-
|
| 213 |
-
@spaces.GPU(duration=120)
|
| 214 |
-
def enhance_image(
|
| 215 |
-
image_input,
|
| 216 |
-
image_url,
|
| 217 |
-
seed,
|
| 218 |
-
randomize_seed,
|
| 219 |
-
num_inference_steps,
|
| 220 |
-
upscale_factor,
|
| 221 |
-
denoising_strength,
|
| 222 |
-
use_generated_caption,
|
| 223 |
-
custom_prompt,
|
| 224 |
-
progress=gr.Progress(track_tqdm=True),
|
| 225 |
-
):
|
| 226 |
-
"""Main enhancement function"""
|
| 227 |
-
# Move models to GPU inside the function
|
| 228 |
-
pipe.to("cuda")
|
| 229 |
-
florence_model.to("cuda")
|
| 230 |
-
|
| 231 |
-
# Handle image input
|
| 232 |
-
if image_input is not None:
|
| 233 |
-
input_image = image_input
|
| 234 |
-
elif image_url:
|
| 235 |
-
input_image = load_image_from_url(image_url)
|
| 236 |
-
else:
|
| 237 |
-
raise gr.Error("Please provide an image (upload or URL)")
|
| 238 |
-
|
| 239 |
-
if randomize_seed:
|
| 240 |
-
seed = random.randint(0, MAX_SEED)
|
| 241 |
-
|
| 242 |
-
true_input_image = input_image
|
| 243 |
-
|
| 244 |
-
# Process input image
|
| 245 |
-
input_image, w_original, h_original, was_resized = process_input(
|
| 246 |
-
input_image, upscale_factor
|
| 247 |
)
|
| 248 |
-
|
| 249 |
-
|
| 250 |
-
|
| 251 |
-
|
| 252 |
-
|
| 253 |
-
prompt = generated_caption
|
| 254 |
-
else:
|
| 255 |
-
prompt = custom_prompt if custom_prompt.strip() else ""
|
| 256 |
-
|
| 257 |
-
generator = torch.Generator(device="cuda").manual_seed(seed)
|
| 258 |
-
|
| 259 |
-
gr.Info("🚀 Upscaling image...")
|
| 260 |
-
|
| 261 |
-
# Initial upscale
|
| 262 |
-
if USE_ESRGAN and upscale_factor == 4:
|
| 263 |
-
esrgan_model.to("cuda")
|
| 264 |
-
control_image = esrgan_upscale(input_image, upscale_factor)
|
| 265 |
-
esrgan_model.to("cpu")
|
| 266 |
-
else:
|
| 267 |
-
w, h = input_image.size
|
| 268 |
-
control_image = input_image.resize((w * upscale_factor, h * upscale_factor), resample=Image.LANCZOS)
|
| 269 |
-
|
| 270 |
-
# Tiled Flux Img2Img for refinement
|
| 271 |
-
image = tiled_flux_img2img(
|
| 272 |
-
pipe,
|
| 273 |
-
prompt,
|
| 274 |
-
control_image,
|
| 275 |
-
denoising_strength,
|
| 276 |
-
num_inference_steps,
|
| 277 |
-
1.0, # Hardcoded guidance_scale to 1
|
| 278 |
-
generator,
|
| 279 |
-
tile_size=1024,
|
| 280 |
-
overlap=32
|
| 281 |
)
|
| 282 |
-
|
| 283 |
-
|
| 284 |
-
|
| 285 |
-
|
| 286 |
-
|
| 287 |
-
# Resize
|
| 288 |
-
|
|
|
|
|
|
|
|
|
|
| 289 |
|
| 290 |
-
|
| 291 |
-
|
| 292 |
-
florence_model.to("cpu")
|
| 293 |
|
| 294 |
-
|
| 295 |
-
|
| 296 |
-
|
| 297 |
-
|
| 298 |
-
|
| 299 |
-
|
| 300 |
-
|
| 301 |
-
|
| 302 |
-
<p>Upload an image or provide a URL to upscale it using Florence-2 captioning and FLUX upscaling</p>
|
| 303 |
-
<p>Currently running on <strong>{}</strong></p>
|
| 304 |
-
</div>
|
| 305 |
-
""".format(power_device))
|
| 306 |
-
|
| 307 |
-
with gr.Row():
|
| 308 |
-
with gr.Column(scale=1):
|
| 309 |
-
gr.HTML("<h3>📤 Input</h3>")
|
| 310 |
|
| 311 |
-
|
| 312 |
-
|
| 313 |
-
|
| 314 |
-
label="Upload Image",
|
| 315 |
-
type="pil",
|
| 316 |
-
height=200 # Made smaller
|
| 317 |
-
)
|
| 318 |
-
|
| 319 |
-
with gr.TabItem("🔗 Image URL"):
|
| 320 |
-
image_url = gr.Textbox(
|
| 321 |
-
label="Image URL",
|
| 322 |
-
placeholder="https://example.com/image.jpg",
|
| 323 |
-
value="https://upload.wikimedia.org/wikipedia/commons/thumb/a/a7/Example.jpg/800px-Example.jpg"
|
| 324 |
-
)
|
| 325 |
|
| 326 |
-
|
| 327 |
-
|
| 328 |
-
|
| 329 |
-
|
| 330 |
-
|
| 331 |
-
|
| 332 |
-
|
| 333 |
-
|
| 334 |
-
|
| 335 |
-
label="Custom Prompt (optional)",
|
| 336 |
-
placeholder="Enter custom prompt or leave empty for generated caption",
|
| 337 |
-
lines=2
|
| 338 |
-
)
|
| 339 |
-
|
| 340 |
-
gr.HTML("<h3>⚙️ Upscaling Settings</h3>")
|
| 341 |
-
|
| 342 |
-
upscale_factor = gr.Slider(
|
| 343 |
-
label="Upscale Factor",
|
| 344 |
-
minimum=1,
|
| 345 |
-
maximum=4,
|
| 346 |
-
step=1,
|
| 347 |
-
value=2,
|
| 348 |
-
info="How much to upscale the image"
|
| 349 |
-
)
|
| 350 |
-
|
| 351 |
-
num_inference_steps = gr.Slider(
|
| 352 |
-
label="Number of Inference Steps",
|
| 353 |
-
minimum=8,
|
| 354 |
-
maximum=50,
|
| 355 |
-
step=1,
|
| 356 |
-
value=25,
|
| 357 |
-
info="More steps = better quality but slower"
|
| 358 |
-
)
|
| 359 |
|
| 360 |
-
|
| 361 |
-
|
| 362 |
-
|
| 363 |
-
|
| 364 |
-
step=0.05,
|
| 365 |
-
value=0.3,
|
| 366 |
-
info="Controls how much the image is transformed"
|
| 367 |
-
)
|
| 368 |
|
| 369 |
-
with
|
| 370 |
-
|
| 371 |
-
|
| 372 |
-
|
| 373 |
-
|
| 374 |
-
|
| 375 |
-
|
| 376 |
-
|
| 377 |
-
|
| 378 |
-
|
| 379 |
-
|
| 380 |
-
|
| 381 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 382 |
|
| 383 |
-
|
| 384 |
-
|
| 385 |
-
|
| 386 |
-
|
| 387 |
-
|
| 388 |
-
|
| 389 |
-
|
| 390 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 391 |
|
| 392 |
-
|
| 393 |
-
|
| 394 |
-
|
| 395 |
-
|
| 396 |
-
|
| 397 |
-
|
| 398 |
-
|
| 399 |
-
|
| 400 |
-
|
| 401 |
-
|
| 402 |
-
|
| 403 |
-
inputs=[
|
| 404 |
-
input_image,
|
| 405 |
-
image_url,
|
| 406 |
-
seed,
|
| 407 |
-
randomize_seed,
|
| 408 |
-
num_inference_steps,
|
| 409 |
-
upscale_factor,
|
| 410 |
-
denoising_strength,
|
| 411 |
-
use_generated_caption,
|
| 412 |
-
custom_prompt,
|
| 413 |
-
],
|
| 414 |
-
outputs=[result_slider]
|
| 415 |
-
)
|
| 416 |
-
|
| 417 |
-
gr.HTML("""
|
| 418 |
-
<div style="margin-top: 2rem; padding: 1rem; background: #f0f0f0; border-radius: 8px;">
|
| 419 |
-
<p><strong>Note:</strong> This upscaler uses the Flux dev model. Users are responsible for obtaining commercial rights if used commercially under their license.</p>
|
| 420 |
-
</div>
|
| 421 |
-
""")
|
| 422 |
|
| 423 |
-
#
|
| 424 |
-
|
| 425 |
-
|
| 426 |
-
|
| 427 |
-
|
| 428 |
-
|
| 429 |
-
|
| 430 |
-
|
| 431 |
-
|
| 432 |
-
width
|
| 433 |
-
height
|
| 434 |
-
|
| 435 |
-
|
| 436 |
-
|
| 437 |
-
|
| 438 |
-
|
| 439 |
-
|
| 440 |
-
|
| 441 |
-
|
| 442 |
-
|
| 443 |
-
|
| 444 |
-
|
| 445 |
-
|
| 446 |
-
|
| 447 |
-
|
| 448 |
-
|
| 449 |
-
|
| 450 |
-
|
| 451 |
-
|
| 452 |
-
|
| 453 |
-
|
| 454 |
-
|
| 455 |
-
|
| 456 |
-
|
| 457 |
-
|
| 458 |
-
|
| 459 |
-
content: "After";
|
| 460 |
-
position: absolute;
|
| 461 |
-
top: 10px;
|
| 462 |
-
right: 10px;
|
| 463 |
-
background: rgba(0,0,0,0.5);
|
| 464 |
-
color: white;
|
| 465 |
-
padding: 5px;
|
| 466 |
-
border-radius: 5px;
|
| 467 |
-
z-index: 10;
|
| 468 |
-
}
|
| 469 |
-
#result_slider .fullscreen img {
|
| 470 |
-
object-fit: contain !important;
|
| 471 |
-
width: 100vw !important;
|
| 472 |
-
height: 100vh !important;
|
| 473 |
-
}
|
| 474 |
-
</style>
|
| 475 |
-
""")
|
| 476 |
|
| 477 |
-
|
| 478 |
-
|
| 479 |
-
|
| 480 |
-
|
| 481 |
-
|
| 482 |
-
if (sliderInput) {
|
| 483 |
-
sliderInput.value = 50;
|
| 484 |
-
sliderInput.dispatchEvent(new Event('input'));
|
| 485 |
-
}
|
| 486 |
-
});
|
| 487 |
-
</script>
|
| 488 |
-
""")
|
| 489 |
|
| 490 |
-
|
| 491 |
-
|
|
|
|
|
|
|
|
|
|
| 1 |
import warnings
|
|
|
|
| 2 |
import gradio as gr
|
|
|
|
|
|
|
| 3 |
import torch
|
|
|
|
|
|
|
|
|
|
| 4 |
from PIL import Image
|
| 5 |
+
from transformers import AutoProcessor, Florence2ForConditionalGeneration
|
| 6 |
+
from diffusers import AutoPipelineForImage2Image
|
| 7 |
+
import random
|
| 8 |
+
import numpy as np
|
| 9 |
+
import os
|
| 10 |
+
import spaces
|
| 11 |
|
|
|
|
| 12 |
try:
|
| 13 |
+
import basicsr
|
| 14 |
+
# Assume basicsr interpolation setup
|
| 15 |
+
interpolation = "basicsr" # Placeholder for actual basicsr usage
|
| 16 |
except ImportError:
|
|
|
|
| 17 |
warnings.warn("basicsr not installed; falling back to LANCZOS interpolation.")
|
| 18 |
+
interpolation = Image.LANCZOS
|
| 19 |
+
|
| 20 |
+
# Initialize models
|
| 21 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 22 |
+
dtype = torch.bfloat16
|
| 23 |
+
huggingface_token = os.getenv("HUGGINGFACE_TOKEN")
|
| 24 |
+
|
| 25 |
+
# Load FLUX img2img pipeline
|
| 26 |
+
pipe = AutoPipelineForImage2Image.from_pretrained(
|
| 27 |
+
"black-forest-labs/FLUX.1-dev",
|
| 28 |
+
torch_dtype=dtype,
|
| 29 |
+
token=huggingface_token
|
| 30 |
+
).to(device)
|
| 31 |
+
pipe.enable_vae_tiling() # To help with memory for large images
|
| 32 |
|
| 33 |
+
# Initialize Florence model with float32 to avoid dtype mismatch
|
| 34 |
+
florence_model = Florence2ForConditionalGeneration.from_pretrained(
|
| 35 |
+
'microsoft/Florence-2-large',
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 36 |
trust_remote_code=True,
|
| 37 |
+
torch_dtype=torch.float32
|
| 38 |
+
).to(device).eval()
|
| 39 |
florence_processor = AutoProcessor.from_pretrained(
|
| 40 |
+
'microsoft/Florence-2-large',
|
| 41 |
trust_remote_code=True
|
| 42 |
)
|
| 43 |
|
| 44 |
+
MAX_SEED = np.iinfo(np.int32).max
|
| 45 |
+
MAX_IMAGE_SIZE = 2048
|
| 46 |
+
|
| 47 |
+
# Florence caption function
|
| 48 |
+
@spaces.GPU
|
| 49 |
+
def florence_caption(image):
|
| 50 |
+
if not isinstance(image, Image.Image):
|
| 51 |
+
image = Image.fromarray(image)
|
| 52 |
+
inputs = florence_processor(text="<DETAILED_CAPTION>", images=image, return_tensors="pt").to(device)
|
| 53 |
+
generated_ids = florence_model.generate(
|
| 54 |
+
input_ids=inputs["input_ids"],
|
| 55 |
+
pixel_values=inputs["pixel_values"],
|
| 56 |
+
max_new_tokens=1024,
|
| 57 |
+
early_stopping=False,
|
| 58 |
+
do_sample=False,
|
| 59 |
+
num_beams=3,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 60 |
)
|
| 61 |
+
generated_text = florence_processor.batch_decode(generated_ids, skip_special_tokens=False)[0]
|
| 62 |
+
parsed_answer = florence_processor.post_process_generation(
|
| 63 |
+
generated_text,
|
| 64 |
+
task="<DETAILED_CAPTION>",
|
| 65 |
+
image_size=(image.width, image.height)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 66 |
)
|
| 67 |
+
return parsed_answer["<DETAILED_CAPTION>"]
|
| 68 |
+
|
| 69 |
+
# Tiled FLUX img2img function with fix for small dimensions and overlap
|
| 70 |
+
def tiled_flux_img2img(image, prompt, strength, num_inference_steps, guidance_scale, tile_size=512, overlap=64):
|
| 71 |
+
width, height = image.size
|
| 72 |
+
# Resize to multiple of 16 to avoid dimension warnings
|
| 73 |
+
width = (width // 16) * 16 if width >= 16 else 16
|
| 74 |
+
height = (height // 16) * 16 if height >= 16 else 16
|
| 75 |
+
if width != image.size[0] or height != image.size[1]:
|
| 76 |
+
image = image.resize((width, height), resample=interpolation)
|
| 77 |
|
| 78 |
+
result = Image.new('RGB', (width, height))
|
| 79 |
+
stride = tile_size - overlap
|
|
|
|
| 80 |
|
| 81 |
+
# For simplicity, tile in both directions, but handle small sizes
|
| 82 |
+
for y in range(0, height, stride):
|
| 83 |
+
for x in range(0, width, stride):
|
| 84 |
+
tile_left = x
|
| 85 |
+
tile_top = y
|
| 86 |
+
tile_right = min(x + tile_size, width)
|
| 87 |
+
tile_bottom = min(y + tile_size, height)
|
| 88 |
+
tile = image.crop((tile_left, tile_top, tile_right, tile_bottom))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 89 |
|
| 90 |
+
# Skip if tile is too small
|
| 91 |
+
if tile.width < 16 or tile.height < 16:
|
| 92 |
+
continue
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 93 |
|
| 94 |
+
# Generate with img2img
|
| 95 |
+
generated_tile = pipe(
|
| 96 |
+
prompt,
|
| 97 |
+
image=tile,
|
| 98 |
+
strength=strength,
|
| 99 |
+
guidance_scale=guidance_scale,
|
| 100 |
+
num_inference_steps=num_inference_steps
|
| 101 |
+
).images[0]
|
| 102 |
+
generated_tile = generated_tile.resize(tile.size) # Ensure size match
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 103 |
|
| 104 |
+
# Paste without blend if first tile
|
| 105 |
+
if x == 0 and y == 0:
|
| 106 |
+
result.paste(generated_tile, (tile_left, tile_top))
|
| 107 |
+
continue
|
|
|
|
|
|
|
|
|
|
|
|
|
| 108 |
|
| 109 |
+
# Blend with previous if overlap
|
| 110 |
+
if y > 0: # Vertical blend
|
| 111 |
+
effective_overlap = min(overlap, tile_bottom - tile_top, result.crop((tile_left, tile_top - overlap, tile_right, tile_top)).height)
|
| 112 |
+
if effective_overlap > 0:
|
| 113 |
+
mask = Image.new('L', (tile_right - tile_left, effective_overlap))
|
| 114 |
+
for i in range(mask.width):
|
| 115 |
+
for j in range(mask.height):
|
| 116 |
+
# Fixed: use effective_overlap for division and range
|
| 117 |
+
mask.putpixel((i, j), int(255 * (j / (effective_overlap - 1 if effective_overlap > 1 else 1))))
|
| 118 |
+
# Blend the top part of the tile with the bottom of the previous
|
| 119 |
+
blend_region = Image.composite(
|
| 120 |
+
generated_tile.crop((0, 0, mask.width, mask.height)),
|
| 121 |
+
result.crop((tile_left, tile_top, tile_right, tile_top + mask.height)),
|
| 122 |
+
mask
|
| 123 |
+
)
|
| 124 |
+
result.paste(blend_region, (tile_left, tile_top))
|
| 125 |
+
# Paste the non-overlap part
|
| 126 |
+
result.paste(generated_tile.crop((0, effective_overlap, generated_tile.width, generated_tile.height)), (tile_left, tile_top + effective_overlap))
|
| 127 |
+
else:
|
| 128 |
+
result.paste(generated_tile, (tile_left, tile_top))
|
| 129 |
|
| 130 |
+
# Similar for horizontal blend (if x > 0), implement analogously
|
| 131 |
+
if x > 0: # Horizontal blend
|
| 132 |
+
# Similar logic, but for left overlap, gradient horizontal
|
| 133 |
+
effective_overlap_h = min(overlap, tile_right - tile_left)
|
| 134 |
+
if effective_overlap_h > 0:
|
| 135 |
+
mask_h = Image.new('L', (effective_overlap_h, tile_bottom - tile_top))
|
| 136 |
+
for i in range(mask_h.width):
|
| 137 |
+
for j in range(mask_h.height):
|
| 138 |
+
mask_h.putpixel((i, j), int(255 * (i / (effective_overlap_h - 1 if effective_overlap_h > 1 else 1))))
|
| 139 |
+
# Blend left part
|
| 140 |
+
blend_region_h = Image.composite(
|
| 141 |
+
generated_tile.crop((0, 0, mask_h.width, mask_h.height)),
|
| 142 |
+
result.crop((tile_left, tile_top, tile_left + mask_h.width, tile_bottom)),
|
| 143 |
+
mask_h
|
| 144 |
+
)
|
| 145 |
+
result.paste(blend_region_h, (tile_left, tile_top))
|
| 146 |
+
# Paste non-overlap
|
| 147 |
+
result.paste(generated_tile.crop((effective_overlap_h, 0, generated_tile.width, generated_tile.height)), (tile_left + effective_overlap_h, tile_top))
|
| 148 |
+
else:
|
| 149 |
+
result.paste(generated_tile, (tile_left, tile_top))
|
| 150 |
|
| 151 |
+
return result
|
| 152 |
+
|
| 153 |
+
# Main enhance function
|
| 154 |
+
@spaces.GPU(duration=190)
|
| 155 |
+
def enhance_image(image, text_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps, strength, progress=gr.Progress(track_tqdm=True)):
|
| 156 |
+
prompt = text_prompt
|
| 157 |
+
if image is not None:
|
| 158 |
+
prompt = florence_caption(image)
|
| 159 |
+
if randomize_seed:
|
| 160 |
+
seed = random.randint(0, MAX_SEED)
|
| 161 |
+
generator = torch.Generator(device=device).manual_seed(seed)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 162 |
|
| 163 |
+
# Use tiled if large, else direct
|
| 164 |
+
if image.size[0] > MAX_IMAGE_SIZE or image.size[1] > MAX_IMAGE_SIZE:
|
| 165 |
+
output_image = tiled_flux_img2img(image, prompt, strength, num_inference_steps, guidance_scale)
|
| 166 |
+
else:
|
| 167 |
+
output_image = pipe(
|
| 168 |
+
prompt,
|
| 169 |
+
image=image,
|
| 170 |
+
generator=generator,
|
| 171 |
+
num_inference_steps=num_inference_steps,
|
| 172 |
+
width=width,
|
| 173 |
+
height=height,
|
| 174 |
+
guidance_scale=guidance_scale,
|
| 175 |
+
strength=strength
|
| 176 |
+
).images[0]
|
| 177 |
+
return output_image, prompt, seed
|
| 178 |
+
|
| 179 |
+
# Gradio interface
|
| 180 |
+
title = "<h1 align='center'>FLUX Image Enhancer with Florence-2 Captioner</h1>"
|
| 181 |
+
with gr.Blocks() as demo:
|
| 182 |
+
gr.HTML(title)
|
| 183 |
+
with gr.Row():
|
| 184 |
+
with gr.Column():
|
| 185 |
+
input_image = gr.Image(label="Upload Image")
|
| 186 |
+
text_prompt = gr.Textbox(label="Text Prompt (if no image)")
|
| 187 |
+
strength = gr.Slider(label="Strength", minimum=0.1, maximum=1.0, value=0.8)
|
| 188 |
+
guidance_scale = gr.Slider(label="Guidance Scale", minimum=1, maximum=10, value=5.0)
|
| 189 |
+
num_inference_steps = gr.Slider(label="Steps", minimum=10, maximum=50, value=20)
|
| 190 |
+
seed = gr.Number(value=42, label="Seed")
|
| 191 |
+
randomize_seed = gr.Checkbox(label="Randomize Seed", value=True)
|
| 192 |
+
width = gr.Slider(minimum=256, maximum=1024, step=16, value=512, label="Width")
|
| 193 |
+
height = gr.Slider(minimum=256, maximum=1024, step=16, value=512, label="Height")
|
| 194 |
+
submit = gr.Button("Enhance")
|
| 195 |
+
with gr.Column():
|
| 196 |
+
output_image = gr.Image(label="Enhanced Image")
|
| 197 |
+
output_prompt = gr.Textbox(label="Generated Prompt")
|
| 198 |
+
output_seed = gr.Number(label="Used Seed")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 199 |
|
| 200 |
+
submit.click(
|
| 201 |
+
enhance_image,
|
| 202 |
+
inputs=[input_image, text_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps, strength],
|
| 203 |
+
outputs=[output_image, output_prompt, output_seed]
|
| 204 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 205 |
|
| 206 |
+
print("✅ All models loaded successfully!")
|
| 207 |
+
demo.launch(server_port=7860, server_name="0.0.0.0")
|