Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -13,7 +13,7 @@ from PIL import Image
|
|
| 13 |
from huggingface_hub import snapshot_download
|
| 14 |
import requests
|
| 15 |
|
| 16 |
-
# For ESRGAN (
|
| 17 |
try:
|
| 18 |
from basicsr.archs.rrdbnet_arch import RRDBNet
|
| 19 |
from basicsr.utils import img2tensor, tensor2img
|
|
@@ -33,9 +33,9 @@ css = """
|
|
| 33 |
}
|
| 34 |
"""
|
| 35 |
|
| 36 |
-
# Device setup
|
| 37 |
power_device = "ZeroGPU"
|
| 38 |
-
device = "cpu"
|
| 39 |
|
| 40 |
# Get HuggingFace token
|
| 41 |
huggingface_token = os.getenv("HF_TOKEN")
|
|
@@ -54,7 +54,7 @@ model_path = snapshot_download(
|
|
| 54 |
print("π₯ Loading Florence-2 model...")
|
| 55 |
florence_model = AutoModelForCausalLM.from_pretrained(
|
| 56 |
"microsoft/Florence-2-large",
|
| 57 |
-
torch_dtype=torch.
|
| 58 |
trust_remote_code=True,
|
| 59 |
attn_implementation="eager"
|
| 60 |
).to(device)
|
|
@@ -67,7 +67,7 @@ florence_processor = AutoProcessor.from_pretrained(
|
|
| 67 |
print("π₯ Loading FLUX Img2Img...")
|
| 68 |
pipe = FluxImg2ImgPipeline.from_pretrained(
|
| 69 |
model_path,
|
| 70 |
-
torch_dtype=torch.
|
| 71 |
)
|
| 72 |
pipe.enable_vae_tiling()
|
| 73 |
pipe.enable_vae_slicing()
|
|
@@ -76,27 +76,51 @@ print("β
All models loaded successfully!")
|
|
| 76 |
|
| 77 |
# Download ESRGAN model if using
|
| 78 |
if USE_ESRGAN:
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 88 |
|
| 89 |
MAX_SEED = 1000000
|
| 90 |
-
MAX_PIXEL_BUDGET = 8192 * 8192
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 91 |
|
| 92 |
|
| 93 |
def generate_caption(image):
|
| 94 |
"""Generate detailed caption using Florence-2"""
|
| 95 |
try:
|
|
|
|
|
|
|
|
|
|
|
|
|
| 96 |
task_prompt = "<MORE_DETAILED_CAPTION>"
|
| 97 |
prompt = task_prompt
|
| 98 |
|
| 99 |
-
inputs = florence_processor(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 100 |
|
| 101 |
generated_ids = florence_model.generate(
|
| 102 |
input_ids=inputs["input_ids"],
|
|
@@ -107,7 +131,11 @@ def generate_caption(image):
|
|
| 107 |
)
|
| 108 |
|
| 109 |
generated_text = florence_processor.batch_decode(generated_ids, skip_special_tokens=False)[0]
|
| 110 |
-
parsed_answer = florence_processor.post_process_generation(
|
|
|
|
|
|
|
|
|
|
|
|
|
| 111 |
|
| 112 |
caption = parsed_answer[task_prompt]
|
| 113 |
return caption
|
|
@@ -120,10 +148,9 @@ def process_input(input_image, upscale_factor):
|
|
| 120 |
"""Process input image and handle size constraints"""
|
| 121 |
w, h = input_image.size
|
| 122 |
w_original, h_original = w, h
|
| 123 |
-
|
| 124 |
-
|
| 125 |
was_resized = False
|
| 126 |
-
|
| 127 |
if w * h * upscale_factor**2 > MAX_PIXEL_BUDGET:
|
| 128 |
warnings.warn(
|
| 129 |
f"Requested output image is too large ({w * upscale_factor}x{h * upscale_factor}). Resizing to fit budget."
|
|
@@ -133,11 +160,11 @@ def process_input(input_image, upscale_factor):
|
|
| 133 |
)
|
| 134 |
target_input_pixels = MAX_PIXEL_BUDGET / (upscale_factor ** 2)
|
| 135 |
scale = (target_input_pixels / (w * h)) ** 0.5
|
| 136 |
-
new_w =
|
| 137 |
-
new_h =
|
| 138 |
input_image = input_image.resize((new_w, new_h), resample=Image.LANCZOS)
|
| 139 |
was_resized = True
|
| 140 |
-
|
| 141 |
return input_image, w_original, h_original, was_resized
|
| 142 |
|
| 143 |
|
|
@@ -152,61 +179,168 @@ def load_image_from_url(url):
|
|
| 152 |
|
| 153 |
|
| 154 |
def esrgan_upscale(image, scale=4):
|
|
|
|
| 155 |
if not USE_ESRGAN:
|
| 156 |
return image.resize((image.width * scale, image.height * scale), resample=Image.LANCZOS)
|
| 157 |
-
|
| 158 |
-
|
| 159 |
-
|
| 160 |
-
|
| 161 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 162 |
|
| 163 |
|
| 164 |
-
def
|
| 165 |
-
"""
|
| 166 |
-
|
| 167 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 168 |
|
| 169 |
-
|
| 170 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 171 |
tile_w = min(tile_size, w - x)
|
| 172 |
tile_h = min(tile_size, h - y)
|
| 173 |
-
|
| 174 |
-
|
| 175 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 176 |
gen_tile = pipe(
|
| 177 |
prompt=prompt,
|
| 178 |
image=tile,
|
| 179 |
strength=strength,
|
| 180 |
num_inference_steps=steps,
|
| 181 |
guidance_scale=guidance,
|
| 182 |
-
height=
|
| 183 |
-
width=
|
| 184 |
generator=generator,
|
| 185 |
).images[0]
|
| 186 |
-
|
| 187 |
-
#
|
| 188 |
-
|
| 189 |
-
|
| 190 |
-
|
| 191 |
-
|
| 192 |
-
|
| 193 |
-
|
| 194 |
-
|
| 195 |
-
|
| 196 |
-
|
| 197 |
-
|
| 198 |
-
|
| 199 |
-
|
| 200 |
-
|
| 201 |
-
|
| 202 |
-
|
| 203 |
-
mask.putpixel((i, j), int(255 * (j / overlap)))
|
| 204 |
-
output.paste(gen_tile, paste_box, mask)
|
| 205 |
-
else:
|
| 206 |
-
output.paste(gen_tile, paste_box)
|
| 207 |
else:
|
| 208 |
-
|
| 209 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 210 |
return output
|
| 211 |
|
| 212 |
|
|
@@ -224,85 +358,106 @@ def enhance_image(
|
|
| 224 |
progress=gr.Progress(track_tqdm=True),
|
| 225 |
):
|
| 226 |
"""Main enhancement function"""
|
| 227 |
-
|
| 228 |
-
|
| 229 |
-
|
| 230 |
-
|
| 231 |
-
|
| 232 |
-
|
| 233 |
-
|
| 234 |
-
|
| 235 |
-
|
| 236 |
-
|
| 237 |
-
|
| 238 |
-
|
| 239 |
-
|
| 240 |
-
|
| 241 |
-
|
| 242 |
-
|
| 243 |
-
|
| 244 |
-
|
| 245 |
-
|
| 246 |
-
input_image
|
| 247 |
-
|
| 248 |
-
|
| 249 |
-
|
| 250 |
-
|
| 251 |
-
|
| 252 |
-
|
| 253 |
-
|
| 254 |
-
|
| 255 |
-
|
| 256 |
-
|
| 257 |
-
|
| 258 |
-
|
| 259 |
-
|
| 260 |
-
|
| 261 |
-
|
| 262 |
-
|
| 263 |
-
|
| 264 |
-
|
| 265 |
-
|
| 266 |
-
|
| 267 |
-
|
| 268 |
-
|
| 269 |
-
|
| 270 |
-
|
| 271 |
-
|
| 272 |
-
|
| 273 |
-
|
| 274 |
-
|
| 275 |
-
|
| 276 |
-
|
| 277 |
-
|
| 278 |
-
|
| 279 |
-
|
| 280 |
-
|
| 281 |
-
|
| 282 |
-
|
| 283 |
-
|
| 284 |
-
|
| 285 |
-
|
| 286 |
-
|
| 287 |
-
|
| 288 |
-
|
| 289 |
-
|
| 290 |
-
|
| 291 |
-
|
| 292 |
-
|
| 293 |
-
|
| 294 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 295 |
|
| 296 |
|
| 297 |
# Create Gradio interface
|
| 298 |
with gr.Blocks(css=css, title="π¨ AI Image Upscaler - Florence-2 + FLUX") as demo:
|
| 299 |
-
gr.HTML("""
|
| 300 |
<div class="main-header">
|
| 301 |
<h1>π¨ AI Image Upscaler</h1>
|
| 302 |
<p>Upload an image or provide a URL to upscale it using Florence-2 captioning and FLUX upscaling</p>
|
| 303 |
-
<p>Currently running on <strong>{}</strong></p>
|
| 304 |
</div>
|
| 305 |
-
"""
|
| 306 |
|
| 307 |
with gr.Row():
|
| 308 |
with gr.Column(scale=1):
|
|
@@ -313,14 +468,14 @@ with gr.Blocks(css=css, title="π¨ AI Image Upscaler - Florence-2 + FLUX") as d
|
|
| 313 |
input_image = gr.Image(
|
| 314 |
label="Upload Image",
|
| 315 |
type="pil",
|
| 316 |
-
height=200
|
| 317 |
)
|
| 318 |
|
| 319 |
with gr.TabItem("π Image URL"):
|
| 320 |
image_url = gr.Textbox(
|
| 321 |
label="Image URL",
|
| 322 |
placeholder="https://example.com/image.jpg",
|
| 323 |
-
value="
|
| 324 |
)
|
| 325 |
|
| 326 |
gr.HTML("<h3>ποΈ Caption Settings</h3>")
|
|
@@ -386,15 +541,15 @@ with gr.Blocks(css=css, title="π¨ AI Image Upscaler - Florence-2 + FLUX") as d
|
|
| 386 |
size="lg"
|
| 387 |
)
|
| 388 |
|
| 389 |
-
with gr.Column(scale=2):
|
| 390 |
gr.HTML("<h3>π Results</h3>")
|
| 391 |
|
| 392 |
result_slider = ImageSlider(
|
| 393 |
type="pil",
|
| 394 |
-
interactive=False,
|
| 395 |
-
height=600,
|
| 396 |
elem_id="result_slider",
|
| 397 |
-
label=None
|
| 398 |
)
|
| 399 |
|
| 400 |
# Event handler
|
|
@@ -419,73 +574,6 @@ with gr.Blocks(css=css, title="π¨ AI Image Upscaler - Florence-2 + FLUX") as d
|
|
| 419 |
<p><strong>Note:</strong> This upscaler uses the Flux dev model. Users are responsible for obtaining commercial rights if used commercially under their license.</p>
|
| 420 |
</div>
|
| 421 |
""")
|
| 422 |
-
|
| 423 |
-
# Custom CSS for slider
|
| 424 |
-
gr.HTML("""
|
| 425 |
-
<style>
|
| 426 |
-
#result_slider .slider {
|
| 427 |
-
width: 100% !important;
|
| 428 |
-
max-width: inherit !important;
|
| 429 |
-
}
|
| 430 |
-
#result_slider img {
|
| 431 |
-
object-fit: contain !important;
|
| 432 |
-
width: 100% !important;
|
| 433 |
-
height: auto !important;
|
| 434 |
-
}
|
| 435 |
-
#result_slider .gr-button-tool {
|
| 436 |
-
display: none !important;
|
| 437 |
-
}
|
| 438 |
-
#result_slider .gr-button-undo {
|
| 439 |
-
display: none !important;
|
| 440 |
-
}
|
| 441 |
-
#result_slider .gr-button-clear {
|
| 442 |
-
display: none !important;
|
| 443 |
-
}
|
| 444 |
-
#result_slider .badge-container .badge {
|
| 445 |
-
display: none !important;
|
| 446 |
-
}
|
| 447 |
-
#result_slider .badge-container::before {
|
| 448 |
-
content: "Before";
|
| 449 |
-
position: absolute;
|
| 450 |
-
top: 10px;
|
| 451 |
-
left: 10px;
|
| 452 |
-
background: rgba(0,0,0,0.5);
|
| 453 |
-
color: white;
|
| 454 |
-
padding: 5px;
|
| 455 |
-
border-radius: 5px;
|
| 456 |
-
z-index: 10;
|
| 457 |
-
}
|
| 458 |
-
#result_slider .badge-container::after {
|
| 459 |
-
content: "After";
|
| 460 |
-
position: absolute;
|
| 461 |
-
top: 10px;
|
| 462 |
-
right: 10px;
|
| 463 |
-
background: rgba(0,0,0,0.5);
|
| 464 |
-
color: white;
|
| 465 |
-
padding: 5px;
|
| 466 |
-
border-radius: 5px;
|
| 467 |
-
z-index: 10;
|
| 468 |
-
}
|
| 469 |
-
#result_slider .fullscreen img {
|
| 470 |
-
object-fit: contain !important;
|
| 471 |
-
width: 100vw !important;
|
| 472 |
-
height: 100vh !important;
|
| 473 |
-
}
|
| 474 |
-
</style>
|
| 475 |
-
""")
|
| 476 |
-
|
| 477 |
-
# JS to set slider default position to middle
|
| 478 |
-
gr.HTML("""
|
| 479 |
-
<script>
|
| 480 |
-
document.addEventListener('DOMContentLoaded', function() {
|
| 481 |
-
const sliderInput = document.querySelector('#result_slider input[type="range"]');
|
| 482 |
-
if (sliderInput) {
|
| 483 |
-
sliderInput.value = 50;
|
| 484 |
-
sliderInput.dispatchEvent(new Event('input'));
|
| 485 |
-
}
|
| 486 |
-
});
|
| 487 |
-
</script>
|
| 488 |
-
""")
|
| 489 |
|
| 490 |
if __name__ == "__main__":
|
| 491 |
demo.queue().launch(share=True, server_name="0.0.0.0", server_port=7860)
|
|
|
|
| 13 |
from huggingface_hub import snapshot_download
|
| 14 |
import requests
|
| 15 |
|
| 16 |
+
# For ESRGAN (optional - will work without it)
|
| 17 |
try:
|
| 18 |
from basicsr.archs.rrdbnet_arch import RRDBNet
|
| 19 |
from basicsr.utils import img2tensor, tensor2img
|
|
|
|
| 33 |
}
|
| 34 |
"""
|
| 35 |
|
| 36 |
+
# Device setup
|
| 37 |
power_device = "ZeroGPU"
|
| 38 |
+
device = "cpu" # Start on CPU, will move to GPU when needed
|
| 39 |
|
| 40 |
# Get HuggingFace token
|
| 41 |
huggingface_token = os.getenv("HF_TOKEN")
|
|
|
|
| 54 |
print("π₯ Loading Florence-2 model...")
|
| 55 |
florence_model = AutoModelForCausalLM.from_pretrained(
|
| 56 |
"microsoft/Florence-2-large",
|
| 57 |
+
torch_dtype=torch.float32, # Use float32 on CPU to avoid dtype issues
|
| 58 |
trust_remote_code=True,
|
| 59 |
attn_implementation="eager"
|
| 60 |
).to(device)
|
|
|
|
| 67 |
print("π₯ Loading FLUX Img2Img...")
|
| 68 |
pipe = FluxImg2ImgPipeline.from_pretrained(
|
| 69 |
model_path,
|
| 70 |
+
torch_dtype=torch.float32 # Start with float32 on CPU
|
| 71 |
)
|
| 72 |
pipe.enable_vae_tiling()
|
| 73 |
pipe.enable_vae_slicing()
|
|
|
|
| 76 |
|
| 77 |
# Download ESRGAN model if using
|
| 78 |
if USE_ESRGAN:
|
| 79 |
+
try:
|
| 80 |
+
esrgan_path = "4x-UltraSharp.pth"
|
| 81 |
+
if not os.path.exists(esrgan_path):
|
| 82 |
+
url = "https://huggingface.co/uwg/upscaler/resolve/main/ESRGAN/4x-UltraSharp.pth"
|
| 83 |
+
print("π₯ Downloading ESRGAN model...")
|
| 84 |
+
with open(esrgan_path, "wb") as f:
|
| 85 |
+
f.write(requests.get(url).content)
|
| 86 |
+
esrgan_model = RRDBNet(num_in_ch=3, num_out_ch=3, num_feat=64, num_block=23, num_grow_ch=32, scale=4)
|
| 87 |
+
state_dict = torch.load(esrgan_path, map_location='cpu')['params_ema']
|
| 88 |
+
esrgan_model.load_state_dict(state_dict)
|
| 89 |
+
esrgan_model.eval()
|
| 90 |
+
print("β
ESRGAN model loaded!")
|
| 91 |
+
except Exception as e:
|
| 92 |
+
print(f"Failed to load ESRGAN: {e}")
|
| 93 |
+
USE_ESRGAN = False
|
| 94 |
|
| 95 |
MAX_SEED = 1000000
|
| 96 |
+
MAX_PIXEL_BUDGET = 8192 * 8192
|
| 97 |
+
|
| 98 |
+
|
| 99 |
+
def make_multiple_16(n):
|
| 100 |
+
"""Round up to nearest multiple of 16"""
|
| 101 |
+
return ((n + 15) // 16) * 16
|
| 102 |
|
| 103 |
|
| 104 |
def generate_caption(image):
|
| 105 |
"""Generate detailed caption using Florence-2"""
|
| 106 |
try:
|
| 107 |
+
# Ensure model is on the correct device with correct dtype
|
| 108 |
+
if florence_model.device.type == "cuda":
|
| 109 |
+
florence_model.to(torch.float16)
|
| 110 |
+
|
| 111 |
task_prompt = "<MORE_DETAILED_CAPTION>"
|
| 112 |
prompt = task_prompt
|
| 113 |
|
| 114 |
+
inputs = florence_processor(
|
| 115 |
+
text=prompt,
|
| 116 |
+
images=image,
|
| 117 |
+
return_tensors="pt"
|
| 118 |
+
).to(florence_model.device)
|
| 119 |
+
|
| 120 |
+
# Ensure dtype consistency
|
| 121 |
+
if florence_model.device.type == "cuda":
|
| 122 |
+
if hasattr(inputs, "pixel_values"):
|
| 123 |
+
inputs["pixel_values"] = inputs["pixel_values"].to(torch.float16)
|
| 124 |
|
| 125 |
generated_ids = florence_model.generate(
|
| 126 |
input_ids=inputs["input_ids"],
|
|
|
|
| 131 |
)
|
| 132 |
|
| 133 |
generated_text = florence_processor.batch_decode(generated_ids, skip_special_tokens=False)[0]
|
| 134 |
+
parsed_answer = florence_processor.post_process_generation(
|
| 135 |
+
generated_text,
|
| 136 |
+
task=task_prompt,
|
| 137 |
+
image_size=(image.width, image.height)
|
| 138 |
+
)
|
| 139 |
|
| 140 |
caption = parsed_answer[task_prompt]
|
| 141 |
return caption
|
|
|
|
| 148 |
"""Process input image and handle size constraints"""
|
| 149 |
w, h = input_image.size
|
| 150 |
w_original, h_original = w, h
|
| 151 |
+
|
|
|
|
| 152 |
was_resized = False
|
| 153 |
+
|
| 154 |
if w * h * upscale_factor**2 > MAX_PIXEL_BUDGET:
|
| 155 |
warnings.warn(
|
| 156 |
f"Requested output image is too large ({w * upscale_factor}x{h * upscale_factor}). Resizing to fit budget."
|
|
|
|
| 160 |
)
|
| 161 |
target_input_pixels = MAX_PIXEL_BUDGET / (upscale_factor ** 2)
|
| 162 |
scale = (target_input_pixels / (w * h)) ** 0.5
|
| 163 |
+
new_w = make_multiple_16(int(w * scale))
|
| 164 |
+
new_h = make_multiple_16(int(h * scale))
|
| 165 |
input_image = input_image.resize((new_w, new_h), resample=Image.LANCZOS)
|
| 166 |
was_resized = True
|
| 167 |
+
|
| 168 |
return input_image, w_original, h_original, was_resized
|
| 169 |
|
| 170 |
|
|
|
|
| 179 |
|
| 180 |
|
| 181 |
def esrgan_upscale(image, scale=4):
|
| 182 |
+
"""Upscale image using ESRGAN or fallback to LANCZOS"""
|
| 183 |
if not USE_ESRGAN:
|
| 184 |
return image.resize((image.width * scale, image.height * scale), resample=Image.LANCZOS)
|
| 185 |
+
|
| 186 |
+
try:
|
| 187 |
+
img = img2tensor(np.array(image) / 255., bgr2rgb=False, float32=True)
|
| 188 |
+
with torch.no_grad():
|
| 189 |
+
# Move model to same device as image tensor
|
| 190 |
+
if torch.cuda.is_available():
|
| 191 |
+
esrgan_model.to("cuda")
|
| 192 |
+
img = img.to("cuda")
|
| 193 |
+
output = esrgan_model(img.unsqueeze(0)).squeeze()
|
| 194 |
+
output_img = tensor2img(output, rgb2bgr=False, min_max=(0, 1))
|
| 195 |
+
return Image.fromarray(output_img)
|
| 196 |
+
except Exception as e:
|
| 197 |
+
print(f"ESRGAN upscale failed: {e}, falling back to LANCZOS")
|
| 198 |
+
return image.resize((image.width * scale, image.height * scale), resample=Image.LANCZOS)
|
| 199 |
|
| 200 |
|
| 201 |
+
def create_blend_mask(width, height, overlap, edge_x, edge_y):
|
| 202 |
+
"""Create a gradient blend mask for smooth tile transitions"""
|
| 203 |
+
mask = Image.new('L', (width, height), 255)
|
| 204 |
+
pixels = mask.load()
|
| 205 |
+
|
| 206 |
+
# Horizontal blend (left edge)
|
| 207 |
+
if edge_x and overlap > 0:
|
| 208 |
+
for x in range(min(overlap, width)):
|
| 209 |
+
alpha = x / overlap
|
| 210 |
+
for y in range(height):
|
| 211 |
+
pixels[x, y] = int(255 * alpha)
|
| 212 |
+
|
| 213 |
+
# Vertical blend (top edge)
|
| 214 |
+
if edge_y and overlap > 0:
|
| 215 |
+
for y in range(min(overlap, height)):
|
| 216 |
+
alpha = y / overlap
|
| 217 |
+
for x in range(width):
|
| 218 |
+
# Combine with existing alpha if both edges
|
| 219 |
+
existing = pixels[x, y] / 255.0
|
| 220 |
+
combined = min(existing, alpha)
|
| 221 |
+
pixels[x, y] = int(255 * combined)
|
| 222 |
+
|
| 223 |
+
return mask
|
| 224 |
+
|
| 225 |
|
| 226 |
+
def tiled_flux_img2img(pipe, prompt, image, strength, steps, guidance, generator, tile_size=1024, overlap=64):
|
| 227 |
+
"""Tiled Img2Img to handle large images"""
|
| 228 |
+
w, h = image.size
|
| 229 |
+
|
| 230 |
+
# Ensure tile_size is divisible by 16
|
| 231 |
+
tile_size = make_multiple_16(tile_size)
|
| 232 |
+
overlap = make_multiple_16(overlap)
|
| 233 |
+
|
| 234 |
+
# If image is small enough, process without tiling
|
| 235 |
+
if w <= tile_size and h <= tile_size:
|
| 236 |
+
# Ensure dimensions are divisible by 16
|
| 237 |
+
new_w = make_multiple_16(w)
|
| 238 |
+
new_h = make_multiple_16(h)
|
| 239 |
+
|
| 240 |
+
if new_w != w or new_h != h:
|
| 241 |
+
padded_image = Image.new('RGB', (new_w, new_h))
|
| 242 |
+
padded_image.paste(image, (0, 0))
|
| 243 |
+
else:
|
| 244 |
+
padded_image = image
|
| 245 |
+
|
| 246 |
+
result = pipe(
|
| 247 |
+
prompt=prompt,
|
| 248 |
+
image=padded_image,
|
| 249 |
+
strength=strength,
|
| 250 |
+
num_inference_steps=steps,
|
| 251 |
+
guidance_scale=guidance,
|
| 252 |
+
height=new_h,
|
| 253 |
+
width=new_w,
|
| 254 |
+
generator=generator,
|
| 255 |
+
).images[0]
|
| 256 |
+
|
| 257 |
+
# Crop back to original size if padded
|
| 258 |
+
if new_w != w or new_h != h:
|
| 259 |
+
result = result.crop((0, 0, w, h))
|
| 260 |
+
|
| 261 |
+
return result
|
| 262 |
+
|
| 263 |
+
# Process with tiling for large images
|
| 264 |
+
output = Image.new('RGB', (w, h))
|
| 265 |
+
|
| 266 |
+
# Calculate tile positions
|
| 267 |
+
tiles = []
|
| 268 |
+
for y in range(0, h, tile_size - overlap):
|
| 269 |
+
for x in range(0, w, tile_size - overlap):
|
| 270 |
tile_w = min(tile_size, w - x)
|
| 271 |
tile_h = min(tile_size, h - y)
|
| 272 |
+
|
| 273 |
+
# Ensure tile dimensions are divisible by 16
|
| 274 |
+
tile_w_padded = make_multiple_16(tile_w)
|
| 275 |
+
tile_h_padded = make_multiple_16(tile_h)
|
| 276 |
+
|
| 277 |
+
tiles.append({
|
| 278 |
+
'x': x,
|
| 279 |
+
'y': y,
|
| 280 |
+
'w': tile_w,
|
| 281 |
+
'h': tile_h,
|
| 282 |
+
'w_padded': tile_w_padded,
|
| 283 |
+
'h_padded': tile_h_padded,
|
| 284 |
+
'edge_x': x > 0,
|
| 285 |
+
'edge_y': y > 0
|
| 286 |
+
})
|
| 287 |
+
|
| 288 |
+
# Process each tile
|
| 289 |
+
for i, tile_info in enumerate(tiles):
|
| 290 |
+
print(f"Processing tile {i+1}/{len(tiles)}...")
|
| 291 |
+
|
| 292 |
+
# Extract tile from image
|
| 293 |
+
tile = image.crop((
|
| 294 |
+
tile_info['x'],
|
| 295 |
+
tile_info['y'],
|
| 296 |
+
tile_info['x'] + tile_info['w'],
|
| 297 |
+
tile_info['y'] + tile_info['h']
|
| 298 |
+
))
|
| 299 |
+
|
| 300 |
+
# Pad if necessary
|
| 301 |
+
if tile_info['w_padded'] != tile_info['w'] or tile_info['h_padded'] != tile_info['h']:
|
| 302 |
+
padded_tile = Image.new('RGB', (tile_info['w_padded'], tile_info['h_padded']))
|
| 303 |
+
padded_tile.paste(tile, (0, 0))
|
| 304 |
+
tile = padded_tile
|
| 305 |
+
|
| 306 |
+
# Process tile with FLUX
|
| 307 |
+
try:
|
| 308 |
gen_tile = pipe(
|
| 309 |
prompt=prompt,
|
| 310 |
image=tile,
|
| 311 |
strength=strength,
|
| 312 |
num_inference_steps=steps,
|
| 313 |
guidance_scale=guidance,
|
| 314 |
+
height=tile_info['h_padded'],
|
| 315 |
+
width=tile_info['w_padded'],
|
| 316 |
generator=generator,
|
| 317 |
).images[0]
|
| 318 |
+
|
| 319 |
+
# Crop back to original tile size if padded
|
| 320 |
+
if tile_info['w_padded'] != tile_info['w'] or tile_info['h_padded'] != tile_info['h']:
|
| 321 |
+
gen_tile = gen_tile.crop((0, 0, tile_info['w'], tile_info['h']))
|
| 322 |
+
|
| 323 |
+
# Create blend mask if needed
|
| 324 |
+
if overlap > 0 and (tile_info['edge_x'] or tile_info['edge_y']):
|
| 325 |
+
mask = create_blend_mask(
|
| 326 |
+
tile_info['w'],
|
| 327 |
+
tile_info['h'],
|
| 328 |
+
overlap,
|
| 329 |
+
tile_info['edge_x'],
|
| 330 |
+
tile_info['edge_y']
|
| 331 |
+
)
|
| 332 |
+
|
| 333 |
+
# Composite with blending
|
| 334 |
+
output.paste(gen_tile, (tile_info['x'], tile_info['y']), mask)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 335 |
else:
|
| 336 |
+
# Direct paste for first tile or no overlap
|
| 337 |
+
output.paste(gen_tile, (tile_info['x'], tile_info['y']))
|
| 338 |
+
|
| 339 |
+
except Exception as e:
|
| 340 |
+
print(f"Error processing tile: {e}")
|
| 341 |
+
# Fallback: paste original tile
|
| 342 |
+
output.paste(tile, (tile_info['x'], tile_info['y']))
|
| 343 |
+
|
| 344 |
return output
|
| 345 |
|
| 346 |
|
|
|
|
| 358 |
progress=gr.Progress(track_tqdm=True),
|
| 359 |
):
|
| 360 |
"""Main enhancement function"""
|
| 361 |
+
try:
|
| 362 |
+
# Move models to GPU and convert to appropriate dtype
|
| 363 |
+
pipe.to("cuda")
|
| 364 |
+
pipe.to(torch.bfloat16)
|
| 365 |
+
|
| 366 |
+
florence_model.to("cuda")
|
| 367 |
+
florence_model.to(torch.float16)
|
| 368 |
+
|
| 369 |
+
# Handle image input
|
| 370 |
+
if image_input is not None:
|
| 371 |
+
input_image = image_input
|
| 372 |
+
elif image_url:
|
| 373 |
+
input_image = load_image_from_url(image_url)
|
| 374 |
+
else:
|
| 375 |
+
raise gr.Error("Please provide an image (upload or URL)")
|
| 376 |
+
|
| 377 |
+
if randomize_seed:
|
| 378 |
+
seed = random.randint(0, MAX_SEED)
|
| 379 |
+
|
| 380 |
+
true_input_image = input_image
|
| 381 |
+
|
| 382 |
+
# Process input image
|
| 383 |
+
input_image, w_original, h_original, was_resized = process_input(
|
| 384 |
+
input_image, upscale_factor
|
| 385 |
+
)
|
| 386 |
+
|
| 387 |
+
# Generate caption if requested
|
| 388 |
+
if use_generated_caption:
|
| 389 |
+
gr.Info("π Generating image caption...")
|
| 390 |
+
generated_caption = generate_caption(input_image)
|
| 391 |
+
prompt = generated_caption
|
| 392 |
+
print(f"Generated caption: {prompt}")
|
| 393 |
+
else:
|
| 394 |
+
prompt = custom_prompt if custom_prompt.strip() else ""
|
| 395 |
+
|
| 396 |
+
generator = torch.Generator(device="cuda").manual_seed(seed)
|
| 397 |
+
|
| 398 |
+
gr.Info("π Upscaling image...")
|
| 399 |
+
|
| 400 |
+
# Initial upscale
|
| 401 |
+
if USE_ESRGAN and upscale_factor == 4:
|
| 402 |
+
if torch.cuda.is_available():
|
| 403 |
+
esrgan_model.to("cuda")
|
| 404 |
+
control_image = esrgan_upscale(input_image, upscale_factor)
|
| 405 |
+
if torch.cuda.is_available():
|
| 406 |
+
esrgan_model.to("cpu")
|
| 407 |
+
else:
|
| 408 |
+
w, h = input_image.size
|
| 409 |
+
control_image = input_image.resize(
|
| 410 |
+
(w * upscale_factor, h * upscale_factor),
|
| 411 |
+
resample=Image.LANCZOS
|
| 412 |
+
)
|
| 413 |
+
|
| 414 |
+
# Tiled Flux Img2Img for refinement
|
| 415 |
+
image = tiled_flux_img2img(
|
| 416 |
+
pipe,
|
| 417 |
+
prompt,
|
| 418 |
+
control_image,
|
| 419 |
+
denoising_strength,
|
| 420 |
+
num_inference_steps,
|
| 421 |
+
1.0, # guidance_scale fixed to 1.0
|
| 422 |
+
generator,
|
| 423 |
+
tile_size=1024,
|
| 424 |
+
overlap=64
|
| 425 |
+
)
|
| 426 |
+
|
| 427 |
+
if was_resized:
|
| 428 |
+
gr.Info(f"π Resizing output to target size: {w_original * upscale_factor}x{h_original * upscale_factor}")
|
| 429 |
+
image = image.resize(
|
| 430 |
+
(w_original * upscale_factor, h_original * upscale_factor),
|
| 431 |
+
resample=Image.LANCZOS
|
| 432 |
+
)
|
| 433 |
+
|
| 434 |
+
# Resize input image to match output size for slider alignment
|
| 435 |
+
resized_input = true_input_image.resize(image.size, resample=Image.LANCZOS)
|
| 436 |
+
|
| 437 |
+
# Move models back to CPU to release GPU
|
| 438 |
+
pipe.to("cpu")
|
| 439 |
+
florence_model.to("cpu")
|
| 440 |
+
torch.cuda.empty_cache()
|
| 441 |
+
|
| 442 |
+
return [resized_input, image]
|
| 443 |
+
|
| 444 |
+
except Exception as e:
|
| 445 |
+
# Ensure models are moved back to CPU even on error
|
| 446 |
+
pipe.to("cpu")
|
| 447 |
+
florence_model.to("cpu")
|
| 448 |
+
torch.cuda.empty_cache()
|
| 449 |
+
raise gr.Error(f"Enhancement failed: {str(e)}")
|
| 450 |
|
| 451 |
|
| 452 |
# Create Gradio interface
|
| 453 |
with gr.Blocks(css=css, title="π¨ AI Image Upscaler - Florence-2 + FLUX") as demo:
|
| 454 |
+
gr.HTML(f"""
|
| 455 |
<div class="main-header">
|
| 456 |
<h1>π¨ AI Image Upscaler</h1>
|
| 457 |
<p>Upload an image or provide a URL to upscale it using Florence-2 captioning and FLUX upscaling</p>
|
| 458 |
+
<p>Currently running on <strong>{power_device}</strong></p>
|
| 459 |
</div>
|
| 460 |
+
""")
|
| 461 |
|
| 462 |
with gr.Row():
|
| 463 |
with gr.Column(scale=1):
|
|
|
|
| 468 |
input_image = gr.Image(
|
| 469 |
label="Upload Image",
|
| 470 |
type="pil",
|
| 471 |
+
height=200
|
| 472 |
)
|
| 473 |
|
| 474 |
with gr.TabItem("π Image URL"):
|
| 475 |
image_url = gr.Textbox(
|
| 476 |
label="Image URL",
|
| 477 |
placeholder="https://example.com/image.jpg",
|
| 478 |
+
value=""
|
| 479 |
)
|
| 480 |
|
| 481 |
gr.HTML("<h3>ποΈ Caption Settings</h3>")
|
|
|
|
| 541 |
size="lg"
|
| 542 |
)
|
| 543 |
|
| 544 |
+
with gr.Column(scale=2):
|
| 545 |
gr.HTML("<h3>π Results</h3>")
|
| 546 |
|
| 547 |
result_slider = ImageSlider(
|
| 548 |
type="pil",
|
| 549 |
+
interactive=False,
|
| 550 |
+
height=600,
|
| 551 |
elem_id="result_slider",
|
| 552 |
+
label=None
|
| 553 |
)
|
| 554 |
|
| 555 |
# Event handler
|
|
|
|
| 574 |
<p><strong>Note:</strong> This upscaler uses the Flux dev model. Users are responsible for obtaining commercial rights if used commercially under their license.</p>
|
| 575 |
</div>
|
| 576 |
""")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 577 |
|
| 578 |
if __name__ == "__main__":
|
| 579 |
demo.queue().launch(share=True, server_name="0.0.0.0", server_port=7860)
|