Spaces:
Running
on
Zero
Running
on
Zero
File size: 36,079 Bytes
012e1d0 4146ea9 012e1d0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 |
from dpm_solver_v3 import NoiseScheduleVP, model_wrapper
import torch
import torch.nn.functional as F
import math
import numpy as np
import os
class UniPC:
def __init__(
self,
noise_schedule,
steps=10,
t_start=None,
t_end=None,
skip_type="customed_time_karras",
degenerated=False,
use_afs = False,
denoise_to_zero=False,
need_fp16_discrete_method = False,
ultilize_vae_in_fp16 = False,
is_high_resoulution = True,
device="cuda",
):
self.device = device
self.model = None
self.noise_schedule = noise_schedule
self.steps = steps if not use_afs else steps + 1
self.use_afs = use_afs
self.ultilize_vae_in_fp16 = ultilize_vae_in_fp16
self.need_fp16_discrete_method = need_fp16_discrete_method
t_0 = 1.0 / self.noise_schedule.total_N if t_end is None else t_end
t_T = self.noise_schedule.T if t_start is None else t_start
self.is_high_resolution = is_high_resoulution
assert (
t_0 > 0 and t_T > 0
), "Time range needs to be greater than 0. For discrete-time DPMs, it needs to be in [1 / N, 1], where N is the length of betas array"
# precompute timesteps
if skip_type == "logSNR" or skip_type == "time_uniform" or skip_type == "time_quadratic" or skip_type == "customed_time_karras":
self.timesteps = self.get_time_steps(skip_type
, t_T=t_T
, t_0=t_0
, N=steps
, device=device,denoise_to_zero=denoise_to_zero
, is_high_resolution=self.is_high_resolution)
else:
raise ValueError(f"Unsupported timestep strategy {skip_type}")
self.lambda_T = self.timesteps[0].cpu().item()
self.lambda_0 = self.timesteps[-1].cpu().item()
# print("Time steps", self.timesteps)
# print("LogSNR steps", self.noise_schedule.marginal_lambda(self.timesteps))
# store high-order exponential coefficients (lazy)
self.exp_coeffs = {}
def noise_prediction_fn(self, x, t):
"""
Return the noise prediction model.
"""
return self.model(x, t)
def append_zero(self, x):
return torch.cat([x, x.new_zeros([1])])
def get_sigmas_karras(self, n, sigma_min, sigma_max, rho=7., device='cpu', need_append_zero=True):
"""Constructs the noise schedule of Karras et al. (2022)."""
ramp = torch.linspace(0, 1, n)
min_inv_rho = sigma_min ** (1 / rho)
max_inv_rho = sigma_max ** (1 / rho)
sigmas = (max_inv_rho + ramp * (min_inv_rho - max_inv_rho)) ** rho
return self.append_zero(sigmas).to(device) if need_append_zero else sigmas.to(device)
def sigma_to_t(self, sigma, quantize=None):
quantize = False
log_sigma = sigma.log()
dists = log_sigma - self.noise_schedule.log_sigmas[:, None]
if quantize:
return dists.abs().argmin(dim=0).view(sigma.shape)
low_idx = dists.ge(0).cumsum(dim=0).argmax(dim=0).clamp(max=self.noise_schedule.log_sigmas.shape[0] - 2)
high_idx = low_idx + 1
low, high = self.noise_schedule.log_sigmas[low_idx], self.noise_schedule.log_sigmas[high_idx]
w = (low - log_sigma) / (low - high)
w = w.clamp(0, 1)
t = (1 - w) * low_idx + w * high_idx
return t.view(sigma.shape)
def get_time_steps(self, skip_type, t_T, t_0, N, device, denoise_to_zero=False, is_high_resolution=True):
"""Compute the intermediate time steps for sampling.
Args:
skip_type: A `str`. The type for the spacing of the time steps. We support three types:
- 'logSNR': uniform logSNR for the time steps.
- 'time_uniform': uniform time for the time steps. (**Recommended for high-resolutional data**.)
- 'time_quadratic': quadratic time for the time steps. (Used in DDIM for low-resolutional data.)
t_T: A `float`. The starting time of the sampling (default is T).
t_0: A `float`. The ending time of the sampling (default is epsilon).
N: A `int`. The total number of the spacing of the time steps.
device: A torch device.
Returns:
A pytorch tensor of the time steps, with the shape (N + 1,).
"""
if skip_type == "logSNR":
lambda_T = self.noise_schedule.marginal_lambda(torch.tensor(t_T).to(device))
lambda_0 = self.noise_schedule.marginal_lambda(torch.tensor(t_0).to(device))
logSNR_steps = torch.linspace(lambda_T.cpu().item(), lambda_0.cpu().item(), N + 1).to(device)
return self.noise_schedule.inverse_lambda(logSNR_steps)
elif skip_type == "time_uniform":
return torch.linspace(t_T, t_0, N + 1).to(device)
elif skip_type == "time_quadratic":
t_order = 2
t = torch.linspace(t_T ** (1.0 / t_order), t_0 ** (1.0 / t_order), N + 1).pow(t_order).to(device)
return t
elif skip_type == "customed_time_karras" and is_high_resolution:
sigma_T = self.noise_schedule.sigmas[-1].cpu().item()
sigma_0 = self.noise_schedule.sigmas[0].cpu().item()
if N == 8:
sigmas = self.get_sigmas_karras(12, sigma_0, sigma_T,rho=12.0, device=device)
if not self.need_fp16_discrete_method:
ct_start, ct_end = self.noise_schedule.sigma_to_t(sigmas[0]), self.sigma_to_t(sigmas[10])
ct = self.get_sigmas_karras(9, ct_end.item(), ct_start.item(),rho=1.2, device='cpu',need_append_zero=False).numpy()
sigmas_ct = self.noise_schedule.get_special_sigmas_with_timesteps(ct).to(device=device)
real_ct = [self.noise_schedule.sigma_to_t(sigma).to('cpu') / 999 for sigma in sigmas_ct]
else:
sigmas = self.get_sigmas_karras(8, sigma_0, sigma_T, rho=5.0, device=device)
ct_start, ct_end = self.noise_schedule.sigma_to_t(sigmas[0]), self.sigma_to_t(sigmas[6])
ct = self.get_sigmas_karras(8, ct_end.item(), ct_start.item(),rho=1.2, device='cpu',need_append_zero=False).numpy()
sigmas_ct = self.noise_schedule.get_special_sigmas_with_timesteps(ct).to(device=device)
tmp_t = [self.noise_schedule.sigma_to_t(sigma).to('cpu') for sigma in sigmas_ct]
real_ct = [ t / 999 for t in tmp_t]
elif N == 5:
sigmas = self.get_sigmas_karras(8, sigma_0, sigma_T, rho=5.0, device=device)
if not self.need_fp16_discrete_method:
sigmas = self.get_sigmas_karras(12, sigma_0, sigma_T,rho=12.0, device=device)
ct_start, ct_end = self.noise_schedule.sigma_to_t(sigmas[0]), self.sigma_to_t(sigmas[9])
ct = self.get_sigmas_karras(6, ct_end.item(), ct_start.item(),rho=1.2, device='cpu',need_append_zero=False).numpy()
sigmas_ct = self.noise_schedule.get_special_sigmas_with_timesteps(ct).to(device=device)
real_ct = [self.noise_schedule.sigma_to_t(sigma).to('cpu') / 999 for sigma in sigmas_ct]
else:
ct_start, ct_end = self.noise_schedule.sigma_to_t(sigmas[0]), self.sigma_to_t(sigmas[6])
ct = self.get_sigmas_karras(5, ct_end.item(), ct_start.item(),rho=1.2, device='cpu',need_append_zero=False).numpy()
sigmas_ct = self.noise_schedule.get_special_sigmas_with_timesteps(ct).to(device=device)
real_ct = [self.noise_schedule.sigma_to_t(sigma).to('cpu') / 999 for sigma in sigmas_ct]
elif N == 6:
sigmas = self.get_sigmas_karras(8, sigma_0, sigma_T, rho=5.0, device=device)
if not self.need_fp16_discrete_method:
sigmas = self.get_sigmas_karras(12, sigma_0, sigma_T,rho=12.0, device=device)
ct_start, ct_end = self.noise_schedule.sigma_to_t(sigmas[0]), self.sigma_to_t(sigmas[10])
ct = self.get_sigmas_karras(7, ct_end.item(), ct_start.item(),rho=1.2, device='cpu',need_append_zero=False).numpy()
sigmas_ct = self.noise_schedule.get_special_sigmas_with_timesteps(ct).to(device=device)
real_ct = [self.noise_schedule.sigma_to_t(sigma).to('cpu') / 999 for sigma in sigmas_ct]
else:
if denoise_to_zero:
ct_start, ct_end = self.noise_schedule.sigma_to_t(sigmas[0]), self.sigma_to_t(sigmas[6])
ct = self.get_sigmas_karras(6, ct_end.item(), ct_start.item(),rho=1.2, device='cpu',need_append_zero=False).numpy()
sigmas_ct = self.noise_schedule.get_special_sigmas_with_timesteps(ct).to(device=device)
real_ct = [self.noise_schedule.sigma_to_t(sigma).to('cpu') / 999 for sigma in sigmas_ct]
real_ct.append(torch.tensor(t_0).to(dtype=real_ct[-1].dtype,device='cpu'))
else:
sigmas = self.get_sigmas_karras(12, sigma_0, sigma_T, rho=7.0, device=device)
ct_start, ct_end = self.noise_schedule.sigma_to_t(sigmas[0]), self.sigma_to_t(sigmas[7])
ct = self.get_sigmas_karras(7, ct_end.item(), ct_start.item(),rho=1.2, device='cpu',need_append_zero=False).numpy()
sigmas_ct = self.noise_schedule.get_special_sigmas_with_timesteps(ct).to(device=device)
real_ct = [self.noise_schedule.sigma_to_t(sigma).to('cpu') / 999 for sigma in sigmas_ct]
elif N == 7:
sigmas = self.get_sigmas_karras(8, sigma_0, sigma_T, rho=5.0, device=device)
if not self.need_fp16_discrete_method:
ct_start, ct_end = self.noise_schedule.sigma_to_t(sigmas[0]), self.sigma_to_t(sigmas[6])
ct = self.get_sigmas_karras(8, ct_end.item(), ct_start.item(),rho=1.2, device='cpu',need_append_zero=False).numpy()
sigmas_ct = self.noise_schedule.get_special_sigmas_with_timesteps(ct).to(device=device)
real_ct = [self.noise_schedule.sigma_to_t(sigma).to('cpu') / 999 for sigma in sigmas_ct]
else:
if denoise_to_zero:
ct_start, ct_end = self.noise_schedule.sigma_to_t(sigmas[0]), self.sigma_to_t(sigmas[6])
ct = self.get_sigmas_karras(7, ct_end.item(), ct_start.item(),rho=1.2, device='cpu',need_append_zero=False).numpy()
sigmas_ct = self.noise_schedule.get_special_sigmas_with_timesteps(ct).to(device=device)
real_ct = [self.noise_schedule.sigma_to_t(sigma).to('cpu') / 999 for sigma in sigmas_ct]
real_ct.append(torch.tensor(t_0).to(dtype=real_ct[-1].dtype,device='cpu'))
# if denoise_to_zero:
# real_ct.append(torch.tensor(t_0).to(dtype=real_ct[-1].dtype,device='cpu'))
if self.use_afs:
tmp_t = (real_ct[0] + real_ct[1]) / 2
real_ct.insert(1, tmp_t)
none_k_ct = torch.from_numpy(np.array(real_ct)).to(device)
return none_k_ct#real_ct
elif skip_type == "customed_time_karras" and not is_high_resolution:
sigma_T = self.noise_schedule.sigmas[-1].cpu().item()
sigma_0 = self.noise_schedule.sigmas[0].cpu().item()
if N == 8:
sigmas = self.get_sigmas_karras(12, sigma_0, sigma_T, rho=7.0, device=device)
ct_start, ct_end = self.noise_schedule.sigma_to_t(sigmas[0]), self.sigma_to_t(sigmas[9])
ct = self.get_sigmas_karras(9, ct_end.item(), ct_start.item(),rho=1.2, device='cpu',need_append_zero=False).numpy()
sigmas_ct = self.noise_schedule.get_special_sigmas_with_timesteps(ct).to(device=device)
real_ct = [self.noise_schedule.sigma_to_t(sigma).to('cpu') / 999 for sigma in sigmas_ct]
elif N == 5:
sigmas = self.get_sigmas_karras(8, sigma_0, sigma_T, rho=5.0, device=device)
ct_start, ct_end = self.noise_schedule.sigma_to_t(sigmas[0]), self.sigma_to_t(sigmas[6])
ct = self.get_sigmas_karras(6, ct_end.item(), ct_start.item(),rho=1.2, device='cpu',need_append_zero=False).numpy()
sigmas_ct = self.noise_schedule.get_special_sigmas_with_timesteps(ct).to(device=device)
real_ct = [self.noise_schedule.sigma_to_t(sigma).to('cpu') / 999 for sigma in sigmas_ct]
elif N == 6:
sigmas = self.sigmas = self.get_sigmas_karras(8, sigma_0, sigma_T, rho=5.0, device=device)
ct_start, ct_end = self.noise_schedule.sigma_to_t(sigmas[0]), self.sigma_to_t(sigmas[6])
ct = self.get_sigmas_karras(7, ct_end.item(), ct_start.item(),rho=1.2, device='cpu',need_append_zero=False).numpy()
sigmas_ct = self.noise_schedule.get_special_sigmas_with_timesteps(ct).to(device=device)
real_ct = [self.noise_schedule.sigma_to_t(sigma).to('cpu') / 999 for sigma in sigmas_ct]
none_k_ct = torch.from_numpy(np.array(real_ct)).to(device)
return none_k_ct#real_ct
else:
raise ValueError(
"Unsupported skip_type {}, need to be 'logSNR' or 'time_uniform' or 'time_quadratic'".format(skip_type)
)
def multistep_uni_pc_update(self, x, model_prev_list:list, t_prev_list: list, t, order, **kwargs):
if len(model_prev_list) == 0 or len(t_prev_list) == 0:
return None, None
if len(t.shape) == 0:
t = t.view(-1)
if True:#'bh' in self.variant:
return self.multistep_uni_pc_bh_update(x, model_prev_list, t_prev_list, t, order, **kwargs)
else:
# assert self.variant == 'vary_coeff'
return self.multistep_uni_pc_vary_update(x, model_prev_list, t_prev_list, t, order, **kwargs)
def multistep_uni_pc_sde_update(self, x, model_prev_list:list, t_prev_list: list, t, order, level = 1.0, **kwargs):
if len(model_prev_list) == 0 or len(t_prev_list) == 0:
return None, None
if len(t.shape) == 0:
t = t.view(-1)
if True:#'bh' in self.variant:
return self.multistep_uni_pc_bh_sde_update(x, model_prev_list, t_prev_list, t, level=level, order= order, **kwargs)
else:
# assert self.variant == 'vary_coeff'
return self.multistep_uni_pc_vary_update(x, model_prev_list, t_prev_list, t, order, **kwargs)
def multistep_uni_pc_bh_update(self, x, model_prev_list, t_prev_list, t, order, x_t=None, use_corrector=True):
# print(f'using unified predictor-corrector with order {order} (solver type: B(h))')
ns = self.noise_schedule
assert order <= len(model_prev_list)
dims = x.dim()
# first compute rks
t_prev_0 = t_prev_list[-1]
lambda_prev_0 = ns.marginal_lambda(t_prev_0)
lambda_t = ns.marginal_lambda(t)
model_prev_0 = model_prev_list[-1]
sigma_prev_0, sigma_t = ns.marginal_std(t_prev_0), ns.marginal_std(t)
log_alpha_prev_0, log_alpha_t = ns.marginal_log_mean_coeff(t_prev_0), ns.marginal_log_mean_coeff(t)
alpha_t = torch.exp(log_alpha_t)
h = lambda_t - lambda_prev_0
rks = []
D1s = []
for i in range(1, order):
t_prev_i = t_prev_list[-(i + 1)]
model_prev_i = model_prev_list[-(i + 1)]
lambda_prev_i = ns.marginal_lambda(t_prev_i)
rk = ((lambda_prev_i - lambda_prev_0) / h)[0]
rks.append(rk)
D1s.append((model_prev_i - model_prev_0) / rk)
rks.append(1.)
rks = torch.tensor(rks, device=x.device)
R = []
b = []
hh = h[0]
h_phi_1 = torch.expm1(hh) # h\phi_1(h) = e^h - 1
h_phi_k = h_phi_1 / hh - 1
factorial_i = 1
if True:
B_h = hh
else:
B_h = torch.expm1(hh)
for i in range(1, order + 1):
R.append(torch.pow(rks, i - 1))
b.append(h_phi_k * factorial_i / B_h)
factorial_i *= (i + 1)
h_phi_k = h_phi_k / hh - 1 / factorial_i
R = torch.stack(R)
b = torch.tensor(b, device=x.device)
# now predictor
use_predictor = len(D1s) > 0 and x_t is None
if len(D1s) > 0:
D1s = torch.stack(D1s, dim=1) # (B, K)
if x_t is None:
# for order 2, we use a simplified version
if order == 2:
rhos_p = torch.tensor([0.5], device=b.device)
else:
rhos_p = torch.linalg.solve(R[:-1, :-1], b[:-1])
else:
D1s = None
if use_corrector:
# print('using corrector')
# for order 1, we use a simplified version
if order == 1:
rhos_c = torch.tensor([0.5], device=b.device)
else:
rhos_c = torch.linalg.solve(R, b)
model_t = None
x_t_ = (
expand_dims(torch.exp(log_alpha_t - log_alpha_prev_0), dims) * x
- expand_dims(sigma_t * h_phi_1, dims) * model_prev_0
)
if x_t is None:
if use_predictor:
pred_res = torch.einsum('k,bkchw->bchw', rhos_p, D1s)
else:
pred_res = 0
x_t = x_t_ - expand_dims(sigma_t * B_h, dims) * pred_res
if use_corrector:
model_t = self.noise_prediction_fn(x_t, t)
if D1s is not None:
corr_res = torch.einsum('k,bkchw->bchw', rhos_c[:-1], D1s)
else:
corr_res = 0
D1_t = (model_t - model_prev_0)
x_t = x_t_ - expand_dims(sigma_t * B_h, dims) * (corr_res + rhos_c[-1] * D1_t)
return x_t, model_t
def multistep_uni_pc_bh_sde_update(self, x, model_prev_list, t_prev_list, t, order, level = 0, x_t=None, use_corrector=True):
# print(f'using unified predictor-corrector with order {order} (solver type: B(h))')
ns = self.noise_schedule
assert order <= len(model_prev_list)
dims = x.dim()
# first compute rks
t_prev_0 = t_prev_list[-1]
lambda_prev_0 = ns.marginal_lambda(t_prev_0)
lambda_t = ns.marginal_lambda(t)
model_prev_0 = model_prev_list[-1]
sigma_prev_0, sigma_t = ns.marginal_std(t_prev_0), ns.marginal_std(t)
log_alpha_prev_0, log_alpha_t = ns.marginal_log_mean_coeff(t_prev_0), ns.marginal_log_mean_coeff(t)
alpha_t = torch.exp(log_alpha_t)
h = lambda_t - lambda_prev_0
z = torch.randn(x.shape, device=self.device)
z = sigma_t * torch.sqrt(torch.expm1(2.0 * h[0])) * z
rks = []
D1s = []
for i in range(1, order):
t_prev_i = t_prev_list[-(i + 1)]
model_prev_i = model_prev_list[-(i + 1)]
lambda_prev_i = ns.marginal_lambda(t_prev_i)
rk = ((lambda_prev_i - lambda_prev_0) / h)[0]
rks.append(rk)
D1s.append((model_prev_i - model_prev_0) / rk)
rks.append(1.)
rks = torch.tensor(rks, device=x.device)
R = []
b = []
hh = h[0]
h_phi_1 = torch.expm1(hh) # h\phi_1(h) = e^h - 1
h_phi_k = h_phi_1 / hh - 1
factorial_i = 1
if True:
B_h = hh
else:
B_h = torch.expm1(hh)
for i in range(1, order + 1):
R.append(torch.pow(rks, i - 1))
b.append(h_phi_k * factorial_i / B_h)
factorial_i *= (i + 1)
h_phi_k = h_phi_k / hh - 1 / factorial_i
R = torch.stack(R)
b = torch.tensor(b, device=x.device)
# now predictor
use_predictor = len(D1s) > 0 and x_t is None
if len(D1s) > 0:
D1s = torch.stack(D1s, dim=1) # (B, K)
if x_t is None:
# for order 2, we use a simplified version
if order == 2:
rhos_p = torch.tensor([0.5], device=b.device)
else:
rhos_p = torch.linalg.solve(R[:-1, :-1], b[:-1])
else:
D1s = None
if use_corrector:
# print('using corrector')
# for order 1, we use a simplified version
if order == 1:
rhos_c = torch.tensor([0.5], device=b.device)
else:
rhos_c = torch.linalg.solve(R, b)
model_t = None
x_t_ = (
expand_dims(torch.exp(log_alpha_t - log_alpha_prev_0), dims) * x
- expand_dims(sigma_t * h_phi_1, dims) * (1 + level) * model_prev_0
)
if x_t is None:
if use_predictor:
pred_res = torch.einsum('k,bkchw->bchw', rhos_p, D1s)
else:
pred_res = 0
x_t_p = (
expand_dims(torch.exp(log_alpha_t - log_alpha_prev_0), dims) * x
- expand_dims(sigma_t * h_phi_1, dims) * model_prev_0
)
x_t = x_t_p - expand_dims(sigma_t * B_h, dims) * pred_res
if use_corrector:
model_t = self.noise_prediction_fn(x_t, t)
if D1s is not None:
corr_res = torch.einsum('k,bkchw->bchw', rhos_c[:-1], D1s)
else:
corr_res = 0
D1_t = (model_t - model_prev_0)
x_t = x_t_ - (1 + level) * expand_dims(sigma_t * B_h, dims) * (corr_res + rhos_c[-1] * D1_t) + z * level
return x_t, model_t
def multistep_uni_pc_vary_update(self, x, model_prev_list, t_prev_list, t, order, use_corrector=True):
# print(f'using unified predictor-corrector with order {order} (solver type: vary coeff)')
ns = self.noise_schedule
assert order <= len(model_prev_list)
dims = x.dim()
# first compute rks
t_prev_0 = t_prev_list[-1]
lambda_prev_0 = ns.marginal_lambda(t_prev_0)
lambda_t = ns.marginal_lambda(t)
model_prev_0 = model_prev_list[-1]
sigma_prev_0, sigma_t = ns.marginal_std(t_prev_0), ns.marginal_std(t)
log_alpha_t = ns.marginal_log_mean_coeff(t)
alpha_t = torch.exp(log_alpha_t)
h = lambda_t - lambda_prev_0
rks = []
D1s = []
for i in range(1, order):
t_prev_i = t_prev_list[-(i + 1)]
model_prev_i = model_prev_list[-(i + 1)]
lambda_prev_i = ns.marginal_lambda(t_prev_i)
rk = ((lambda_prev_i - lambda_prev_0) / h)[0]
rks.append(rk)
D1s.append((model_prev_i - model_prev_0) / rk)
rks.append(1.)
rks = torch.tensor(rks, device=x.device)
K = len(rks)
# build C matrix
C = []
col = torch.ones_like(rks)
for k in range(1, K + 1):
C.append(col)
col = col * rks / (k + 1)
C = torch.stack(C, dim=1)
if len(D1s) > 0:
D1s = torch.stack(D1s, dim=1) # (B, K)
C_inv_p = torch.linalg.inv(C[:-1, :-1])
A_p = C_inv_p
if use_corrector:
# print('using corrector')
C_inv = torch.linalg.inv(C)
A_c = C_inv
hh = h
h_phi_1 = torch.expm1(hh)
h_phi_ks = []
factorial_k = 1
h_phi_k = h_phi_1
for k in range(1, K + 2):
h_phi_ks.append(h_phi_k)
h_phi_k = h_phi_k / hh - 1 / factorial_k
factorial_k *= (k + 1)
model_t = None
if True:
log_alpha_prev_0, log_alpha_t = ns.marginal_log_mean_coeff(t_prev_0), ns.marginal_log_mean_coeff(t)
x_t_ = (
expand_dims((torch.exp(log_alpha_t - log_alpha_prev_0)),dims) * x
- expand_dims((sigma_t * h_phi_1),dims) * model_prev_0
)
# now predictor
x_t = x_t_
if len(D1s) > 0:
# compute the residuals for predictor
for k in range(K - 1):
x_t = x_t - expand_dims(sigma_t * h_phi_ks[k + 1],dims) * torch.einsum('bkchw,k->bchw', D1s, A_p[k])
# now corrector
if use_corrector:
model_t = self.noise_prediction_fn(x_t, t)
D1_t = (model_t - model_prev_0)
x_t = x_t_
k = 0
for k in range(K - 1):
x_t = x_t - expand_dims(sigma_t * h_phi_ks[k + 1],dims) * torch.einsum('bkchw,k->bchw', D1s, A_c[k][:-1])
x_t = x_t - expand_dims(sigma_t * h_phi_ks[K],dims) * (D1_t * A_c[k][-1])
return x_t, model_t
def sample(
self,
x,
model_fn,
order,
use_corrector,
lower_order_final,
start_free_u_step=None,
free_u_apply_callback=None,
free_u_stop_callback=None,
npnet_x = None,
npnet_scale = None,
half=False,
return_intermediate=False,
):
self.model = lambda x, t: model_fn(x, t.expand((x.shape[0])))
steps = self.steps
vec_t = self.timesteps[0].expand((x.shape[0]))
if free_u_stop_callback is not None:
free_u_stop_callback()
if start_free_u_step is not None and 0 == start_free_u_step and free_u_apply_callback is not None:
free_u_apply_callback()
has_called_free_u = True
if not self.use_afs:
fir_output = self.noise_prediction_fn(x, vec_t)
else:
fir_output = x # ultilize npnet there in the future
if npnet_x is not None and npnet_scale is not None:
fir_output = npnet_x
# fir_output = fir_output - npnet_scale * (npnet_out - fir_output) #guidance_scale * (noise - noise_uncond)
x = fir_output.clone().detach().to(fir_output.device)
model_prev_list = [fir_output]
full_cache = [fir_output]
t_prev_list = [vec_t]
has_called_free_u = False
for init_order in range(1, order):
if start_free_u_step is not None and init_order == start_free_u_step and free_u_apply_callback is not None and (not has_called_free_u):
free_u_apply_callback()
has_called_free_u = True
vec_t = self.timesteps[init_order].expand(x.shape[0])
x, model_x = self.multistep_uni_pc_update(x, model_prev_list, t_prev_list, vec_t, init_order, use_corrector=True)
if model_x is None:
model_x = self.noise_prediction_fn(x, vec_t)
x = model_x.clone().detach().to(torch.float32).to(model_x.device)
full_cache.append(x)
model_prev_list.append(model_x)
t_prev_list.append(vec_t)
for step in range(order, steps + 1):
if start_free_u_step is not None and step == start_free_u_step and free_u_apply_callback is not None and (not has_called_free_u):
free_u_apply_callback()
vec_t = self.timesteps[step].expand(x.shape[0])
if lower_order_final:
step_order = min(order, steps + 1 - step)
else:
step_order = order
# print('this step order:', step_order)
if step == steps:
# print('do not run corrector at the last step')
use_corrector = False
else:
use_corrector = True
x, model_x = self.multistep_uni_pc_update(x, model_prev_list, t_prev_list, vec_t, step_order, use_corrector=use_corrector)
for i in range(order - 1):
t_prev_list[i] = t_prev_list[i + 1]
model_prev_list[i] = model_prev_list[i + 1]
t_prev_list[-1] = vec_t
# We do not need to evaluate the final model value.
full_cache.append(x)
if step < steps:
if model_x is None:
model_x = self.noise_prediction_fn(x, vec_t)
model_prev_list[-1] = model_x
return x, full_cache
def sample_mix(
self,
x,
model_fn,
order,
use_corrector,
lower_order_final,
start_free_u_step=None,
free_u_apply_callback=None,
free_u_stop_callback=None,
noise_level = 0.1,
half=False,
return_intermediate=False,
):
self.model = lambda x, t: model_fn(x, t.expand((x.shape[0])))
steps = self.steps
vec_t = self.timesteps[0].expand((x.shape[0]))
fir_output = self.noise_prediction_fn(x, vec_t)
model_prev_list = [fir_output]
full_cache = [fir_output]
t_prev_list = [vec_t]
has_called_free_u = False
if free_u_stop_callback is not None:
free_u_stop_callback()
for init_order in range(1, order):
if start_free_u_step is not None and init_order == start_free_u_step and free_u_apply_callback is not None:
free_u_apply_callback()
has_called_free_u = True
vec_t = self.timesteps[init_order].expand(x.shape[0])
if start_free_u_step is not None and init_order >= start_free_u_step and free_u_apply_callback is not None:
x, model_x = self.multistep_uni_pc_sde_update(x
, model_prev_list
, t_prev_list
, vec_t
, init_order
, use_corrector=True
,level=noise_level)
else:
x, model_x = self.multistep_uni_pc_sde_update(x
, model_prev_list
, t_prev_list
, vec_t
, init_order
, use_corrector=True
,level=0.0)
if model_x is None:
model_x = self.noise_prediction_fn(x, vec_t)
x = model_x.clone().detach().to(torch.float32).to(model_x.device)
full_cache.append(x)
model_prev_list.append(model_x)
t_prev_list.append(vec_t)
if free_u_stop_callback is not None:
free_u_stop_callback()
for step in range(order, steps + 1):
if start_free_u_step is not None and step == start_free_u_step and free_u_apply_callback is not None and (not has_called_free_u):
free_u_apply_callback()
vec_t = self.timesteps[step].expand(x.shape[0])
if lower_order_final:
step_order = min(order, steps + 1 - step)
else:
step_order = order
# print('this step order:', step_order)
if step == steps:
# print('do not run corrector at the last step')
use_corrector = False
else:
use_corrector = True
if start_free_u_step is not None and step >= start_free_u_step and free_u_apply_callback is not None:
x, model_x = self.multistep_uni_pc_sde_update(x
, model_prev_list
, t_prev_list
, vec_t
, step_order
, use_corrector=use_corrector
, level=noise_level)
else:
x, model_x = self.multistep_uni_pc_sde_update(x
, model_prev_list
, t_prev_list
, vec_t
, step_order
, use_corrector=use_corrector
, level=0.0)
for i in range(order - 1):
t_prev_list[i] = t_prev_list[i + 1]
model_prev_list[i] = model_prev_list[i + 1]
t_prev_list[-1] = vec_t
# We do not need to evaluate the final model value.
full_cache.append(x)
if step < steps:
if model_x is None:
model_x = self.noise_prediction_fn(x, vec_t)
model_prev_list[-1] = model_x
return x, full_cache
#############################################################
# other utility functions
#############################################################
def interpolate_fn(x, xp, yp):
"""
A piecewise linear function y = f(x), using xp and yp as keypoints.
We implement f(x) in a differentiable way (i.e. applicable for autograd).
The function f(x) is well-defined for all x-axis. (For x beyond the bounds of xp, we use the outmost points of xp to define the linear function.)
Args:
x: PyTorch tensor with shape [N, C], where N is the batch size, C is the number of channels (we use C = 1 for DPM-Solver).
xp: PyTorch tensor with shape [C, K], where K is the number of keypoints.
yp: PyTorch tensor with shape [C, K].
Returns:
The function values f(x), with shape [N, C].
"""
N, K = x.shape[0], xp.shape[1]
all_x = torch.cat([x.unsqueeze(2), xp.unsqueeze(0).repeat((N, 1, 1))], dim=2)
sorted_all_x, x_indices = torch.sort(all_x, dim=2)
x_idx = torch.argmin(x_indices, dim=2)
cand_start_idx = x_idx - 1
start_idx = torch.where(
torch.eq(x_idx, 0),
torch.tensor(1, device=x.device),
torch.where(
torch.eq(x_idx, K), torch.tensor(K - 2, device=x.device), cand_start_idx,
),
)
end_idx = torch.where(torch.eq(start_idx, cand_start_idx), start_idx + 2, start_idx + 1)
start_x = torch.gather(sorted_all_x, dim=2, index=start_idx.unsqueeze(2)).squeeze(2)
end_x = torch.gather(sorted_all_x, dim=2, index=end_idx.unsqueeze(2)).squeeze(2)
start_idx2 = torch.where(
torch.eq(x_idx, 0),
torch.tensor(0, device=x.device),
torch.where(
torch.eq(x_idx, K), torch.tensor(K - 2, device=x.device), cand_start_idx,
),
)
y_positions_expanded = yp.unsqueeze(0).expand(N, -1, -1)
start_y = torch.gather(y_positions_expanded, dim=2, index=start_idx2.unsqueeze(2)).squeeze(2)
end_y = torch.gather(y_positions_expanded, dim=2, index=(start_idx2 + 1).unsqueeze(2)).squeeze(2)
cand = start_y + (x - start_x) * (end_y - start_y) / (end_x - start_x)
return cand
def expand_dims(v, dims):
"""
Expand the tensor `v` to the dim `dims`.
Args:
`v`: a PyTorch tensor with shape [N].
`dim`: a `int`.
Returns:
a PyTorch tensor with shape [N, 1, 1, ..., 1] and the total dimension is `dims`.
"""
return v[(...,) + (None,)*(dims - 1)]
|