vmasmitja
commited on
Commit
路
fd6fb97
1
Parent(s):
ab01055
Fix app initialization issue
Browse files- app.py +122 -18
- requirements.txt +4 -2
app.py
CHANGED
|
@@ -1,30 +1,134 @@
|
|
| 1 |
-
import
|
| 2 |
import numpy as np
|
| 3 |
import librosa
|
|
|
|
|
|
|
| 4 |
from transformers import pipeline
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 5 |
|
| 6 |
-
#
|
| 7 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 8 |
|
| 9 |
-
#
|
| 10 |
-
def
|
| 11 |
-
|
| 12 |
-
raise ValueError("No se ha proporcionado un archivo de audio.")
|
| 13 |
|
| 14 |
-
#
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 18 |
|
| 19 |
-
# Crear la interfaz Gradio
|
| 20 |
demo = gr.Interface(
|
| 21 |
-
fn=
|
| 22 |
-
inputs=
|
| 23 |
outputs="text",
|
| 24 |
-
title="
|
| 25 |
-
description="
|
| 26 |
)
|
| 27 |
|
| 28 |
-
# Lanzar la aplicaci贸n
|
| 29 |
if __name__ == "__main__":
|
| 30 |
-
demo.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import ffmpeg
|
| 2 |
import numpy as np
|
| 3 |
import librosa
|
| 4 |
+
import os
|
| 5 |
+
import time
|
| 6 |
from transformers import pipeline
|
| 7 |
+
import gradio as gr
|
| 8 |
+
|
| 9 |
+
# Modelos de Hugging Face para espa帽ol
|
| 10 |
+
transcriber = pipeline("automatic-speech-recognition", model="openai/whisper-small", language="es")
|
| 11 |
+
summarizer = pipeline("summarization", model="mrm8488/bert2bert_shared-spanish-finetuned-summarization")
|
| 12 |
+
|
| 13 |
+
# Variable global para estados y transcripciones
|
| 14 |
+
state = {"status": "Esperando transmisi贸n...", "transcriptions": [], "summary": ""}
|
| 15 |
+
|
| 16 |
+
# Funci贸n para esperar inicio de transmisi贸n RTMP
|
| 17 |
+
def wait_for_stream(rtmp_url):
|
| 18 |
+
state["status"] = "Esperando transmisi贸n..."
|
| 19 |
+
print(state["status"])
|
| 20 |
+
while True:
|
| 21 |
+
try:
|
| 22 |
+
probe = ffmpeg.probe(rtmp_url, format='flv')
|
| 23 |
+
if probe:
|
| 24 |
+
state["status"] = "隆Transmisi贸n detectada!"
|
| 25 |
+
print(state["status"])
|
| 26 |
+
break
|
| 27 |
+
except ffmpeg.Error:
|
| 28 |
+
time.sleep(5)
|
| 29 |
+
|
| 30 |
+
# Procesar transmisi贸n RTMP en tiempo real
|
| 31 |
+
def process_rtmp(rtmp_url):
|
| 32 |
+
audio_output = "stream_audio.wav"
|
| 33 |
+
transcription = []
|
| 34 |
+
|
| 35 |
+
state["status"] = "Transcribiendo en tiempo real..."
|
| 36 |
+
print(state["status"])
|
| 37 |
+
|
| 38 |
+
# Iniciar FFmpeg para extraer audio en tiempo real
|
| 39 |
+
process = (
|
| 40 |
+
ffmpeg
|
| 41 |
+
.input(rtmp_url, format='flv')
|
| 42 |
+
.output(audio_output, format='wav', acodec='pcm_s16le', ac=1, ar=16000)
|
| 43 |
+
.overwrite_output()
|
| 44 |
+
.run_async(pipe_stdout=True, pipe_stderr=True)
|
| 45 |
+
)
|
| 46 |
+
|
| 47 |
+
try:
|
| 48 |
+
while True:
|
| 49 |
+
if os.path.exists(audio_output):
|
| 50 |
+
audio_data, _ = librosa.load(audio_output, sr=16000)
|
| 51 |
+
if len(audio_data) > 0:
|
| 52 |
+
text = transcriber(np.array(audio_data))["text"]
|
| 53 |
+
transcription.append(text)
|
| 54 |
+
state["transcriptions"].append(text)
|
| 55 |
+
print(f"Transcripci贸n: {text}")
|
| 56 |
+
time.sleep(2) # Procesar cada 2 segundos
|
| 57 |
+
except KeyboardInterrupt:
|
| 58 |
+
process.terminate()
|
| 59 |
+
|
| 60 |
+
state["status"] = "Transmisi贸n finalizada"
|
| 61 |
+
print(state["status"])
|
| 62 |
+
return " ".join(transcription)
|
| 63 |
|
| 64 |
+
# Generar resumen
|
| 65 |
+
def finalize_summary(transcription):
|
| 66 |
+
state["status"] = "Generando resumen..."
|
| 67 |
+
print(state["status"])
|
| 68 |
+
summary = summarizer(transcription, max_length=100, min_length=30, do_sample=False)[0]["summary_text"]
|
| 69 |
+
state["summary"] = summary
|
| 70 |
+
state["status"] = "Resumen listo"
|
| 71 |
+
print(state["status"])
|
| 72 |
+
return summary
|
| 73 |
|
| 74 |
+
# Flujo principal
|
| 75 |
+
def process_and_finalize():
|
| 76 |
+
rtmp_url = "rtmp://37.27.213.138/live/stream"
|
|
|
|
| 77 |
|
| 78 |
+
# Esperar inicio de transmisi贸n
|
| 79 |
+
wait_for_stream(rtmp_url)
|
| 80 |
+
|
| 81 |
+
# Procesar transmisi贸n y transcribir en tiempo real
|
| 82 |
+
transcription = process_rtmp(rtmp_url)
|
| 83 |
+
|
| 84 |
+
# Generar resumen
|
| 85 |
+
summary = finalize_summary(transcription)
|
| 86 |
+
|
| 87 |
+
return summary
|
| 88 |
+
|
| 89 |
+
# Interfaz Gradio
|
| 90 |
+
def display_status():
|
| 91 |
+
# Mostrar estados y transcripciones en tiempo real
|
| 92 |
+
return f"Estado: {state['status']}\n\nTranscripciones:\n" + "\n".join(state["transcriptions"]) + f"\n\nResumen final:\n{state['summary']}"
|
| 93 |
|
|
|
|
| 94 |
demo = gr.Interface(
|
| 95 |
+
fn=display_status,
|
| 96 |
+
inputs=None,
|
| 97 |
outputs="text",
|
| 98 |
+
title="Estado de Transmisi贸n y Resumen",
|
| 99 |
+
description="Muestra el estado de la transmisi贸n, transcripciones en tiempo real y el resumen generado."
|
| 100 |
)
|
| 101 |
|
|
|
|
| 102 |
if __name__ == "__main__":
|
| 103 |
+
demo.launch()
|
| 104 |
+
|
| 105 |
+
# import gradio as gr
|
| 106 |
+
# import numpy as np
|
| 107 |
+
# import librosa
|
| 108 |
+
# from transformers import pipeline
|
| 109 |
+
|
| 110 |
+
# # Cargar el modelo de transcripci贸n Whisper
|
| 111 |
+
# transcriber = pipeline("automatic-speech-recognition", model="openai/whisper-small")
|
| 112 |
+
|
| 113 |
+
# # Funci贸n para procesar y transcribir el audio
|
| 114 |
+
# def transcribe(audio):
|
| 115 |
+
# if audio is None:
|
| 116 |
+
# raise ValueError("No se ha proporcionado un archivo de audio.")
|
| 117 |
+
|
| 118 |
+
# # Cargar el archivo de audio como un array NumPy
|
| 119 |
+
# audio_data, _ = librosa.load(audio, sr=16000) # Resample a 16 kHz
|
| 120 |
+
# result = transcriber(np.array(audio_data))
|
| 121 |
+
# return result["text"]
|
| 122 |
+
|
| 123 |
+
# # Crear la interfaz Gradio
|
| 124 |
+
# demo = gr.Interface(
|
| 125 |
+
# fn=transcribe,
|
| 126 |
+
# inputs=gr.Audio(type="filepath"), # Subida de archivos de audio
|
| 127 |
+
# outputs="text",
|
| 128 |
+
# title="Transcripci贸n de Audio en Vivo",
|
| 129 |
+
# description="Sube un archivo de audio para transcribir su contenido autom谩ticamente."
|
| 130 |
+
# )
|
| 131 |
+
|
| 132 |
+
# # Lanzar la aplicaci贸n
|
| 133 |
+
# if __name__ == "__main__":
|
| 134 |
+
# demo.launch()
|
requirements.txt
CHANGED
|
@@ -1,4 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
| 1 |
transformers
|
| 2 |
gradio
|
| 3 |
-
torch
|
| 4 |
-
librosa
|
|
|
|
| 1 |
+
ffmpeg-python
|
| 2 |
+
numpy
|
| 3 |
+
librosa
|
| 4 |
transformers
|
| 5 |
gradio
|
| 6 |
+
torch
|
|
|