File size: 5,949 Bytes
c2ef2a2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
18575e5
c2ef2a2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
18575e5
 
 
c2ef2a2
18575e5
 
 
 
 
c2ef2a2
18575e5
 
 
 
 
 
 
 
 
 
 
c2ef2a2
18575e5
 
 
c2ef2a2
18575e5
 
 
 
 
 
 
c2ef2a2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
18575e5
 
c2ef2a2
 
18575e5
 
 
 
 
c2ef2a2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ae90fce
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
import gradio as gr
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
import spaces

# Model configuration
MODEL_PATH = "ibm-granite/granite-4.0-h-small"

# Load tokenizer (doesn't need GPU)
tokenizer = AutoTokenizer.from_pretrained(MODEL_PATH)

# Load model and move to GPU
model = AutoModelForCausalLM.from_pretrained(
    MODEL_PATH,
    torch_dtype=torch.float16,
    low_cpu_mem_usage=True
)
model.to('cuda')
model.eval()

@spaces.GPU(duration=60)
def generate_response(message, history):
    """Generate response using IBM Granite model with ZeroGPU with streaming."""
    
    # Format the conversation history
    chat = []
    
    # Add conversation history
    for user_msg, assistant_msg in history:
        chat.append({"role": "user", "content": user_msg})
        if assistant_msg:
            chat.append({"role": "assistant", "content": assistant_msg})
    
    # Add current message
    chat.append({"role": "user", "content": message})
    
    # Apply chat template
    formatted_chat = tokenizer.apply_chat_template(
        chat, 
        tokenize=False, 
        add_generation_prompt=True
    )
    
    # Tokenize the text
    input_tokens = tokenizer(
        formatted_chat, 
        return_tensors="pt",
        truncation=True,
        max_length=2048
    ).to('cuda')
    
    # Setup for streaming generation
    from transformers import TextIteratorStreamer
    from threading import Thread
    
    streamer = TextIteratorStreamer(
        tokenizer, 
        skip_prompt=True, 
        skip_special_tokens=True
    )
    
    # Generation kwargs
    generation_kwargs = dict(
        **input_tokens,
        max_new_tokens=512,
        temperature=0.7,
        top_p=0.95,
        do_sample=True,
        pad_token_id=tokenizer.eos_token_id,
        eos_token_id=tokenizer.eos_token_id,
        streamer=streamer
    )
    
    # Start generation in a separate thread
    thread = Thread(target=model.generate, kwargs=generation_kwargs)
    thread.start()
    
    # Stream the response
    response = ""
    for new_text in streamer:
        response += new_text
        yield response
    
    thread.join()

# Create the Gradio interface
with gr.Blocks(title="IBM Granite Chat", theme=gr.themes.Soft()) as demo:
    gr.HTML(
        """
        <div style="text-align: center; max-width: 800px; margin: 0 auto; padding: 20px;">
            <h1 style="font-size: 2.5em; margin-bottom: 0.5em;">🪨 IBM Granite 4.0 Chat</h1>
            <p style="font-size: 1.1em; color: #666; margin-bottom: 1em;">
                Chat with IBM Granite 4.0-h Small model powered by ZeroGPU
            </p>
            <p style="font-size: 0.9em; color: #888;">
                <a href="https://huggingface.co/spaces/akhaliq/anycoder" target="_blank" style="color: #007bff; text-decoration: none;">
                    Built with anycoder
                </a>
            </p>
        </div>
        """
    )
    
    chatbot = gr.Chatbot(
        height=500,
        bubble_full_width=False,
        show_copy_button=True,
        layout="panel"
    )
    
    with gr.Row():
        msg = gr.Textbox(
            label="Your Message",
            placeholder="Type your message here and press Enter...",
            lines=2,
            scale=9,
            autofocus=True
        )
        submit_btn = gr.Button("Send", variant="primary", scale=1)
    
    with gr.Row():
        clear_btn = gr.ClearButton([msg, chatbot], value="🗑️ Clear Chat")
        
    with gr.Accordion("Advanced Settings", open=False):
        gr.Markdown("""
        ### Model Information
        - **Model**: IBM Granite 4.0-h Small
        - **Parameters**: Optimized for efficient inference
        - **Powered by**: Hugging Face ZeroGPU
        
        ### Tips for Better Responses:
        - Be specific and clear in your questions
        - Provide context when needed
        - The model excels at various tasks including coding, analysis, and general conversation
        """)
    
    # Example prompts
    gr.Examples(
        examples=[
            "Explain quantum computing in simple terms",
            "Write a Python function to calculate factorial",
            "What are the main differences between machine learning and deep learning?",
            "Help me debug this code: def add(a, b) return a + b",
            "Create a healthy meal plan for a week",
            "Explain the concept of blockchain technology",
        ],
        inputs=msg,
        label="Example Prompts"
    )
    
    # Event handlers
    def user_submit(message, history):
        if not message.strip():
            return "", history
        return "", history + [[message, None]]
    
    def bot_response(history):
        if not history or history[-1][1] is not None:
            yield history
            return
        
        user_message = history[-1][0]
        history[-1][1] = ""
        
        for partial_response in generate_response(user_message, history[:-1]):
            history[-1][1] = partial_response
            yield history
    
    # Connect events
    msg.submit(user_submit, [msg, chatbot], [msg, chatbot], queue=False).then(
        bot_response, chatbot, chatbot
    )
    
    submit_btn.click(user_submit, [msg, chatbot], [msg, chatbot], queue=False).then(
        bot_response, chatbot, chatbot
    )
    
    # Add footer
    gr.HTML(
        """
        <div style="text-align: center; margin-top: 30px; padding: 20px; border-top: 1px solid #e0e0e0;">
            <p style="color: #666; font-size: 0.9em;">
                This application uses the IBM Granite 4.0-h Small model for generating responses.
                <br>Responses are generated using AI and should be verified for accuracy.
            </p>
        </div>
        """
    )

# Launch the application
if __name__ == "__main__":
    demo.queue()
    demo.launch(
        show_api=False,
        share=False
    )