Spaces:
Running
Running
File size: 10,939 Bytes
d473371 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 |
import plotly.graph_objects as go
from plotly.subplots import make_subplots
import numpy as np
# 30 distinct colors - assigned by Avg AUP rank
COLOR_PALETTE = [
"#E91E63", "#4A90E2", "#00BFA5", "#FF6B35", "#8E24AA",
"#4CAF50", "#FF4081", "#303F9F", "#FFD166", "#00796B",
"#C2185B", "#7B1FA2", "#26A69A", "#1A4C7C", "#FF8C42",
"#009688", "#673AB7", "#F44336", "#3F51B5", "#795548",
"#607D8B", "#9C27B0", "#2196F3", "#CDDC39", "#FF9800",
"#00BCD4", "#E64A19", "#5D4037", "#455A64", "#AD1457",
]
def get_model_colors(df):
"""Assign colors to methods by Avg AUP rank (descending)."""
models_sorted = df.sort_values("Avg_AUP", ascending=False)["Method"].tolist()
return {model: COLOR_PALETTE[i % len(COLOR_PALETTE)] for i, model in enumerate(models_sorted)}
def get_model_ranks(df):
"""Get rank for each method by Avg AUP."""
models_sorted = df.sort_values("Avg_AUP", ascending=False)["Method"].tolist()
return {model: i + 1 for i, model in enumerate(models_sorted)}
def hex_to_rgba(hex_color, alpha=0.25):
hex_color = hex_color.lstrip('#')
r, g, b = int(hex_color[0:2], 16), int(hex_color[2:4], 16), int(hex_color[4:6], 16)
return f'rgba({r},{g},{b},{alpha})'
def create_radar_chart(df, tasks, top_n=15):
"""Create radar chart for top N methods showing original AUP scores (independent axes)."""
df_top = df.head(top_n).copy()
model_colors = get_model_colors(df)
model_ranks = get_model_ranks(df)
all_cols = [f"{t}_AUP" for t in tasks] + ["Avg_AUP"]
categories = [t.replace("-", "\n") for t in tasks] + ["Avg\nAUP"]
# Compute min/max per column for normalization (for radar display only)
col_stats = {}
for col in all_cols:
vals = df_top[col].dropna().astype(float)
col_stats[col] = {'min': vals.min() if len(vals) > 0 else 0,
'max': vals.max() if len(vals) > 0 else 100}
fig = go.Figure()
for _, row in df_top.iterrows():
method = row["Method"]
rank = model_ranks.get(method, 0)
color = model_colors.get(method, "#808080")
display_name = f"#{rank} {method}"
# Original AUP values for hover display
original_vals = [row.get(col, 0) or 0 for col in all_cols]
# Normalized values for radar shape (0-100 scale per axis)
normalized = []
for col, val in zip(all_cols, original_vals):
stats = col_stats[col]
range_val = stats['max'] - stats['min']
if range_val > 0:
norm = ((val - stats['min']) / range_val) * 80 + 10 # Scale to 10-90
else:
norm = 50
normalized.append(norm)
# Custom hover text showing original AUP scores
hover_texts = [f"<b>{display_name}</b><br>{cat}: <b>{val:.1f}</b>"
for cat, val in zip(categories, original_vals)]
fig.add_trace(go.Scatterpolar(
r=normalized + [normalized[0]],
theta=categories + [categories[0]],
mode='lines+markers', fill='toself', name=display_name,
line=dict(color=color, width=2), marker=dict(color=color, size=6),
fillcolor=hex_to_rgba(color, 0.15), opacity=0.9,
text=hover_texts + [hover_texts[0]],
hovertemplate='%{text}<extra></extra>'
))
fig.update_layout(
height=600, margin=dict(l=100, r=250, t=80, b=60),
title=dict(text=f"π― Top {top_n} Methods: AUP Scores in Radar Chart", x=0.5, font=dict(size=18)),
# title=dict(text=f"π― Top {top_n} Methods: AUP Scores in Radar Chart", x=0.5, font=dict(size=18)),
polar=dict(radialaxis=dict(visible=True, range=[0, 100], tickfont=dict(size=11),
tickvals=[], showticklabels=False)),
legend=dict(font=dict(size=12), x=1.05, y=1, bgcolor='rgba(255,255,255,0.95)',
bordercolor='#ddd', borderwidth=1, title=dict(text="Methods (sorted by Avg AUP)", font=dict(size=13))),
hoverlabel=dict(bgcolor="white", font_size=14, font_family="Arial", bordercolor="#333")
)
return fig
def create_group_bar_chart(df, tasks, top_n=15):
"""Create grouped bar chart with Avg AUP included and rank numbers."""
df_top = df.head(top_n).copy()
methods = df_top["Method"].tolist()
model_colors = get_model_colors(df)
model_ranks = get_model_ranks(df)
all_benchmarks = tasks + ["Avg_AUP"]
fig = go.Figure()
for method in methods:
row = df_top[df_top["Method"] == method].iloc[0]
color = model_colors.get(method, "#808080")
rank = model_ranks.get(method, 0)
display_name = f"#{rank} {method}"
y_vals, x_vals = [], []
for bench in all_benchmarks:
aup = row.get("Avg_AUP") if bench == "Avg_AUP" else row.get(f"{bench}_AUP")
if aup is not None and not (isinstance(aup, float) and aup != aup):
y_vals.append(aup)
x_vals.append("Avg AUP" if bench == "Avg_AUP" else bench)
if y_vals:
fig.add_trace(go.Bar(
name=display_name, x=x_vals, y=y_vals, marker_color=color,
hovertemplate=f"<b>{display_name}</b><br>%{{x}}: %{{y:.1f}}<extra></extra>"
))
fig.update_layout(
height=550, margin=dict(l=60, r=250, t=80, b=100),
title=dict(text=f"π Top {top_n} Methods: AUP Scores in Bar Chart", x=0.5, font=dict(size=18)),
# title=dict(text=f"π Top {top_n} Methods: AUP Scores of Different Benchmarks", x=0.5, font=dict(size=18)),
xaxis_title="Benchmark", yaxis_title="AUP Score",
barmode='group', bargap=0.2, bargroupgap=0.05,
legend=dict(font=dict(size=11), x=1.02, y=1, bgcolor='rgba(255,255,255,0.95)',
bordercolor='#ddd', borderwidth=1, title=dict(text="Methods (sorted by Avg AUP)", font=dict(size=12))),
hoverlabel=dict(bgcolor="white", font_size=14, font_family="Arial")
)
return fig
def create_aup_curve_chart(raw_data, tasks, df, top_n=15):
"""Create 2x3 subplot grid of AUP curves with quadratic fitting (same as plot_lines.py)."""
df_top = df.head(top_n).copy()
model_colors = get_model_colors(df)
model_ranks = get_model_ranks(df)
methods_to_show = set(df_top["Method"].tolist())
# Build per-task data: {task: {method: [(rho, y), ...]}}
task_data = {t: {} for t in tasks}
for task in tasks:
for method, pairs in raw_data.get(task, {}).items():
if method in methods_to_show:
task_data[task][method] = [(p[0], p[1]) for p in pairs]
# Compute average data: average TPF and Acc by index across tasks (all tasks have same length)
avg_data = {}
for method in methods_to_show:
task_points = [task_data.get(t, {}).get(method, []) for t in tasks]
task_points = [p for p in task_points if p] # filter empty
if not task_points:
continue
n_points = len(task_points[0])
avg_data[method] = [
(np.mean([tp[i][0] for tp in task_points]), sum(tp[i][1] for tp in task_points) / 5)
for i in range(n_points)
]
# 6 subplots: 5 tasks + 1 Average at (2,3)
titles = tasks + ["Average"]
fig = make_subplots(rows=2, cols=3, subplot_titles=titles,
horizontal_spacing=0.08, vertical_spacing=0.15)
# Track which methods have been added to legend
legend_added = set()
def get_pos(idx):
if idx < 3:
return (1, idx + 1)
return (2, idx - 2) # idx=3->(2,1), idx=4->(2,2), idx=5->(2,3)
# Helper to draw curve for a given subplot
def draw_curve(pairs, method, row, col):
nonlocal legend_added
if not pairs:
return
color = model_colors.get(method, "#808080")
rank = model_ranks.get(method, 0)
display_name = f"#{rank} {method}"
show_legend = method not in legend_added
if show_legend:
legend_added.add(method)
rho, y = zip(*sorted(pairs, key=lambda x: x[0]))
rho, y = np.array(rho), np.array(y)
# Generate smooth curve (quadratic fitting, same as plot_lines.py)
if len(rho) >= 3:
z = np.polyfit(rho, y, 2)
p = np.poly1d(z)
x_smooth = np.linspace(rho.min(), rho.max(), 300)
y_smooth = p(x_smooth)
elif len(rho) == 2:
x_smooth = np.linspace(rho.min(), rho.max(), 300)
if rho[1] != rho[0]:
a = (y[1] - y[0]) / ((rho[1] - rho[0]) ** 2)
y_smooth = a * (x_smooth - rho[0]) ** 2 + y[0]
else:
y_smooth = np.linspace(y[0], y[1], 300)
else:
x_smooth, y_smooth = rho, y
# Add fitted curve
fig.add_trace(go.Scatter(
x=x_smooth, y=y_smooth, mode='lines', name=display_name,
line=dict(color=color, width=2.5), opacity=0.85,
showlegend=show_legend, legendgroup=method,
hoverinfo='skip'
), row=row, col=col)
# Add markers at original data points
fig.add_trace(go.Scatter(
x=rho, y=y, mode='markers', name=display_name,
marker=dict(color='white', size=8, line=dict(color=color, width=2)),
showlegend=False, legendgroup=method,
hovertemplate=f"<b>{display_name}</b><br>TPF: %{{x:.2f}}<br>Acc: %{{y:.1f}}<extra></extra>"
), row=row, col=col)
# Draw 5 task subplots
for idx, task in enumerate(tasks):
row, col = get_pos(idx)
data = task_data.get(task, {})
for method in df_top["Method"].tolist():
if method in data:
draw_curve(data[method], method, row, col)
# Draw Average subplot at (2, 3)
for method in df_top["Method"].tolist():
if method in avg_data:
draw_curve(avg_data[method], method, 2, 3)
fig.update_layout(
height=550, margin=dict(l=60, r=250, t=80, b=60),
title=dict(text=f"π Top {top_n} Methods: Accuracy-Parallelism Curves", x=0.5, font=dict(size=18)),
legend=dict(font=dict(size=11), x=1.02, y=1, bgcolor='rgba(255,255,255,0.95)',
bordercolor='#ddd', borderwidth=1, title=dict(text="Methods (sorted by Avg AUP)", font=dict(size=12)),
tracegroupgap=1, itemsizing='constant'),
hoverlabel=dict(bgcolor="white", font_size=14, font_family="Arial")
)
# Update axes labels for 6 subplots
for idx in range(6):
row, col = get_pos(idx)
fig.update_xaxes(title_text="TPF (Tokens per Forward)" if idx >= 3 else "", row=row, col=col)
fig.update_yaxes(title_text="Acc (%)" if col == 1 else "", row=row, col=col)
return fig
|