Update app.py
Browse files
app.py
CHANGED
|
@@ -4,6 +4,27 @@ import soundfile as sf
|
|
| 4 |
from transformers import SpeechT5Processor, SpeechT5ForTextToSpeech, SpeechT5HifiGan
|
| 5 |
from datasets import load_dataset
|
| 6 |
import numpy as np
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 7 |
|
| 8 |
# Load the processor, model, and vocoder
|
| 9 |
processor = SpeechT5Processor.from_pretrained("danhtran2mind/Viet-SpeechT5-TTS-finetuning")
|
|
@@ -15,9 +36,7 @@ embeddings_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validat
|
|
| 15 |
|
| 16 |
def generate_speech(text, voice):
|
| 17 |
# Select speaker embedding based on voice choice
|
| 18 |
-
speaker_dict = {"male": 2000,
|
| 19 |
-
"female": 7000}
|
| 20 |
-
|
| 21 |
speaker_id = speaker_dict[voice.lower()]
|
| 22 |
speaker_embedding = torch.tensor(embeddings_dataset[speaker_id]["xvector"]).unsqueeze(0)
|
| 23 |
|
|
@@ -38,6 +57,9 @@ def generate_speech(text, voice):
|
|
| 38 |
sf.write(output_path, speech.numpy(), samplerate=16000)
|
| 39 |
return output_path
|
| 40 |
|
|
|
|
|
|
|
|
|
|
| 41 |
# Create Gradio interface
|
| 42 |
iface = gr.Interface(
|
| 43 |
fn=generate_speech,
|
|
@@ -47,9 +69,10 @@ iface = gr.Interface(
|
|
| 47 |
],
|
| 48 |
outputs=gr.Audio(label="Generated Speech"),
|
| 49 |
title="Vietnamese Text-to-Speech with SpeechT5",
|
| 50 |
-
description="Enter Vietnamese text and select a voice (Male or Female) to generate speech."
|
|
|
|
| 51 |
)
|
| 52 |
|
| 53 |
# Launch the app
|
| 54 |
if __name__ == "__main__":
|
| 55 |
-
iface.launch(
|
|
|
|
| 4 |
from transformers import SpeechT5Processor, SpeechT5ForTextToSpeech, SpeechT5HifiGan
|
| 5 |
from datasets import load_dataset
|
| 6 |
import numpy as np
|
| 7 |
+
import json
|
| 8 |
+
import os
|
| 9 |
+
|
| 10 |
+
# Directory containing config files
|
| 11 |
+
CONFIG_DIR = "assets/Viet-SpeechT5-TTS-finetuning"
|
| 12 |
+
|
| 13 |
+
# Load all config.json files from the directory
|
| 14 |
+
def load_configs(directory):
|
| 15 |
+
examples = []
|
| 16 |
+
for root, _, files in os.walk(directory):
|
| 17 |
+
for file in files:
|
| 18 |
+
if file == "config.json":
|
| 19 |
+
file_path = os.path.join(root, file)
|
| 20 |
+
try:
|
| 21 |
+
with open(file_path, 'r', encoding='utf-8') as f:
|
| 22 |
+
config = json.load(f)
|
| 23 |
+
if "input_text" in config and "voice" in config:
|
| 24 |
+
examples.append([config["input_text"], config["voice"]])
|
| 25 |
+
except Exception as e:
|
| 26 |
+
print(f"Error reading {file_path}: {e}")
|
| 27 |
+
return examples
|
| 28 |
|
| 29 |
# Load the processor, model, and vocoder
|
| 30 |
processor = SpeechT5Processor.from_pretrained("danhtran2mind/Viet-SpeechT5-TTS-finetuning")
|
|
|
|
| 36 |
|
| 37 |
def generate_speech(text, voice):
|
| 38 |
# Select speaker embedding based on voice choice
|
| 39 |
+
speaker_dict = {"male": 2000, "female": 7000}
|
|
|
|
|
|
|
| 40 |
speaker_id = speaker_dict[voice.lower()]
|
| 41 |
speaker_embedding = torch.tensor(embeddings_dataset[speaker_id]["xvector"]).unsqueeze(0)
|
| 42 |
|
|
|
|
| 57 |
sf.write(output_path, speech.numpy(), samplerate=16000)
|
| 58 |
return output_path
|
| 59 |
|
| 60 |
+
# Load examples from config files
|
| 61 |
+
examples = load_configs(CONFIG_DIR)
|
| 62 |
+
|
| 63 |
# Create Gradio interface
|
| 64 |
iface = gr.Interface(
|
| 65 |
fn=generate_speech,
|
|
|
|
| 69 |
],
|
| 70 |
outputs=gr.Audio(label="Generated Speech"),
|
| 71 |
title="Vietnamese Text-to-Speech with SpeechT5",
|
| 72 |
+
description="Enter Vietnamese text and select a voice (Male or Female) to generate speech.",
|
| 73 |
+
examples=examples
|
| 74 |
)
|
| 75 |
|
| 76 |
# Launch the app
|
| 77 |
if __name__ == "__main__":
|
| 78 |
+
iface.launch()
|