File size: 3,742 Bytes
f56ede2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
import cv2
import torch
from PIL import Image
import numpy as np
import yaml
import argparse
from controlnet_aux import OpenposeDetector
from diffusers import StableDiffusionControlNetPipeline, ControlNetModel, UniPCMultistepScheduler
from utils.download import load_image
from utils.plot import image_grid

def load_config(config_path):
    with open(config_path, 'r') as file:
        return yaml.safe_load(file)

def initialize_controlnet(config):
    model_id = config['model_id']
    local_dir = config.get('local_dir', model_id)
    return ControlNetModel.from_pretrained(
        local_dir if local_dir != model_id else model_id,
        torch_dtype=torch.float16
    )

def initialize_pipeline(controlnet, config):
    model_id = config['model_id']
    local_dir = config.get('local_dir', model_id)
    pipe = StableDiffusionControlNetPipeline.from_pretrained(
        local_dir if local_dir != model_id else model_id,
        controlnet=controlnet,
        torch_dtype=torch.float16
    )
    pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config)
    return pipe

def setup_device(pipe):
    device = "cuda" if torch.cuda.is_available() else "cpu"
    if device == "cuda":
        pipe.enable_model_cpu_offload()
    pipe.to(device)
    return device

def generate_images(pipe, prompts, pose_images, generators, negative_prompts, num_steps):
    return pipe(
        prompts,
        pose_images,
        negative_prompt=negative_prompts,
        generator=generators,
        num_inference_steps=num_steps
    ).images

def infer(args):
    # Load configuration
    configs = load_config(args.config_path)
    
    # Initialize models
    controlnet_detector = OpenposeDetector.from_pretrained(
        configs[2]['model_id']  # lllyasviel/ControlNet
    )
    controlnet = initialize_controlnet(configs[0])
    pipe = initialize_pipeline(controlnet, configs[1])
    
    # Setup device
    device = setup_device(pipe)
    
    # Load and process image
    demo_image = load_image(args.image_url)
    poses = [controlnet_detector(demo_image)]
    
    # Generate images
    generators = [torch.Generator(device="cpu").manual_seed(args.seed) for _ in range(len(poses))]
    
    output_images = generate_images(
        pipe,
        [args.prompt] * len(generators),
        poses,
        generators,
        [args.negative_prompt] * len(generators),
        args.num_steps
    )
    
    # Display results
    # image_grid(output_images, 2, 2)

if __name__ == "__main__":
    parser = argparse.ArgumentParser(description="ControlNet image generation with pose detection")
    parser.add_argument("--config_path", type=str, default="configs/model_ckpts.yaml", 
                       help="Path to configuration YAML file")
    parser.add_argument("--image_url", type=str, 
                       default="https://huggingface.co/datasets/YiYiXu/controlnet-testing/resolve/main/yoga1.jpeg",
                       help="URL of input image")
    parser.add_argument("--prompt", type=str, default="a man is doing yoga",
                       help="Text prompt for image generation")
    parser.add_argument("--negative_prompt", type=str, 
                       default="monochrome, lowres, bad anatomy, worst quality, low quality",
                       help="Negative prompt for image generation")
    parser.add_argument("--num_steps", type=int, default=20,
                       help="Number of inference steps")
    parser.add_argument("--seed", type=int, default=2,
                       help="Random seed for generation")
    # return parser.parse_args()
    args = parser.parse_args()
    infer(args)