Update app.py
Browse files
app.py
CHANGED
|
@@ -19,17 +19,11 @@ from langchain.memory import StreamlitChatMessageHistory
|
|
| 19 |
from gtts import gTTS
|
| 20 |
from IPython.display import Audio, display
|
| 21 |
|
| 22 |
-
|
| 23 |
-
import speech_recognition as sr
|
| 24 |
-
|
| 25 |
-
from langchain.callbacks import get_openai_callback
|
| 26 |
-
from langchain.memory import StreamlitChatMessageHistory
|
| 27 |
-
|
| 28 |
def main():
|
| 29 |
st.set_page_config(
|
| 30 |
page_title="์ฐจ๋์ฉ Q&A ์ฑ๋ด",
|
| 31 |
-
page_icon=":car:"
|
| 32 |
-
)
|
| 33 |
|
| 34 |
st.title("์ฐจ๋์ฉ Q&A ์ฑ๋ด :car:")
|
| 35 |
|
|
@@ -53,9 +47,9 @@ def main():
|
|
| 53 |
st.stop()
|
| 54 |
files_text = get_text(uploaded_files)
|
| 55 |
text_chunks = get_text_chunks(files_text)
|
| 56 |
-
|
| 57 |
|
| 58 |
-
st.session_state.conversation = get_conversation_chain(
|
| 59 |
|
| 60 |
st.session_state.processComplete = True
|
| 61 |
|
|
@@ -77,70 +71,32 @@ def main():
|
|
| 77 |
st.markdown(query)
|
| 78 |
|
| 79 |
with st.chat_message("assistant"):
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
source_documents = result['source_documents']
|
| 95 |
-
|
| 96 |
-
st.markdown(response)
|
| 97 |
-
with st.expander("์ฐธ๊ณ ๋ฌธ์ ํ์ธ"):
|
| 98 |
-
st.markdown(source_documents[0].metadata['source'], help=source_documents[0].page_content)
|
| 99 |
-
st.markdown(source_documents[1].metadata['source'], help=source_documents[1].page_content)
|
| 100 |
-
st.markdown(source_documents[2].metadata['source'], help=source_documents[2].page_content)
|
| 101 |
-
|
| 102 |
-
# TTS ์ฝ๋ ์ถ๊ฐ
|
| 103 |
-
tts("์ด๊ฒ์ ์์ฑ์ผ๋ก ๋ณํ๋ ๋ต๋ณ์
๋๋ค.")
|
| 104 |
-
|
| 105 |
-
# Add assistant message to chat history
|
| 106 |
-
st.session_state.messages.append({"role": "assistant", "content": response})
|
| 107 |
-
|
| 108 |
-
# ...
|
| 109 |
-
|
| 110 |
-
# STT ํจ์ ์ถ๊ฐ
|
| 111 |
-
def stt():
|
| 112 |
-
recognizer = sr.Recognizer()
|
| 113 |
-
|
| 114 |
-
with sr.Microphone() as source:
|
| 115 |
-
st.write("๋งํด๋ณด์ธ์...")
|
| 116 |
-
recognizer.adjust_for_ambient_noise(source)
|
| 117 |
-
audio = recognizer.listen(source, timeout=5)
|
| 118 |
-
|
| 119 |
-
try:
|
| 120 |
-
text = recognizer.recognize_google(audio, language="ko-KR")
|
| 121 |
-
st.write("์ธ์๋ ํ
์คํธ: {}".format(text))
|
| 122 |
-
return text
|
| 123 |
-
except sr.UnknownValueError:
|
| 124 |
-
st.write("์์ฑ์ ์ธ์ํ ์ ์์ต๋๋ค.")
|
| 125 |
-
return None
|
| 126 |
-
except sr.RequestError as e:
|
| 127 |
-
st.write("Google Speech Recognition ์๋น์ค์ ์ ๊ทผํ ์ ์์ต๋๋ค; {0}".format(e))
|
| 128 |
-
return None
|
| 129 |
-
|
| 130 |
-
# TTS ํจ์ ์ถ๊ฐ
|
| 131 |
-
def tts(text):
|
| 132 |
-
st.write("์์ฑ์ผ๋ก ๋ณํ ์ค...")
|
| 133 |
-
tts = gTTS(text=text, lang='ko')
|
| 134 |
-
audio_stream = BytesIO()
|
| 135 |
-
tts.save(audio_stream)
|
| 136 |
-
st.audio(audio_stream, format='audio/wav')
|
| 137 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 138 |
def tiktoken_len(text):
|
| 139 |
tokenizer = tiktoken.get_encoding("cl100k_base")
|
| 140 |
tokens = tokenizer.encode(text)
|
| 141 |
return len(tokens)
|
| 142 |
|
| 143 |
-
|
| 144 |
def get_text(docs):
|
| 145 |
doc_list = []
|
| 146 |
|
|
@@ -156,7 +112,7 @@ def get_text(docs):
|
|
| 156 |
doc_list.extend(documents)
|
| 157 |
return doc_list
|
| 158 |
|
| 159 |
-
|
| 160 |
def get_text_chunks(text):
|
| 161 |
text_splitter = RecursiveCharacterTextSplitter(
|
| 162 |
chunk_size=1000,
|
|
@@ -166,7 +122,7 @@ def get_text_chunks(text):
|
|
| 166 |
chunks = text_splitter.split_documents(text)
|
| 167 |
return chunks
|
| 168 |
|
| 169 |
-
|
| 170 |
def get_vectorstore(text_chunks):
|
| 171 |
embeddings = HuggingFaceEmbeddings(
|
| 172 |
model_name="jhgan/ko-sroberta-multitask",
|
|
@@ -176,7 +132,7 @@ def get_vectorstore(text_chunks):
|
|
| 176 |
vectordb = FAISS.from_documents(text_chunks, embeddings)
|
| 177 |
return vectordb
|
| 178 |
|
| 179 |
-
|
| 180 |
def get_conversation_chain(vetorestore, openai_api_key):
|
| 181 |
llm = ChatOpenAI(openai_api_key=openai_api_key, model_name='gpt-3.5-turbo', temperature=0)
|
| 182 |
conversation_chain = ConversationalRetrievalChain.from_llm(
|
|
|
|
| 19 |
from gtts import gTTS
|
| 20 |
from IPython.display import Audio, display
|
| 21 |
|
| 22 |
+
#์ฌ์ดํธ ๊ด๋ จ ํจ์
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 23 |
def main():
|
| 24 |
st.set_page_config(
|
| 25 |
page_title="์ฐจ๋์ฉ Q&A ์ฑ๋ด",
|
| 26 |
+
page_icon=":car:")
|
|
|
|
| 27 |
|
| 28 |
st.title("์ฐจ๋์ฉ Q&A ์ฑ๋ด :car:")
|
| 29 |
|
|
|
|
| 47 |
st.stop()
|
| 48 |
files_text = get_text(uploaded_files)
|
| 49 |
text_chunks = get_text_chunks(files_text)
|
| 50 |
+
vetorestore = get_vectorstore(text_chunks)
|
| 51 |
|
| 52 |
+
st.session_state.conversation = get_conversation_chain(vetorestore, openai_api_key)
|
| 53 |
|
| 54 |
st.session_state.processComplete = True
|
| 55 |
|
|
|
|
| 71 |
st.markdown(query)
|
| 72 |
|
| 73 |
with st.chat_message("assistant"):
|
| 74 |
+
chain = st.session_state.conversation
|
| 75 |
+
|
| 76 |
+
with st.spinner("Thinking..."):
|
| 77 |
+
result = chain({"question": query})
|
| 78 |
+
with get_openai_callback() as cb:
|
| 79 |
+
st.session_state.chat_history = result['chat_history']
|
| 80 |
+
response = result['answer']
|
| 81 |
+
source_documents = result['source_documents']
|
| 82 |
+
|
| 83 |
+
st.markdown(response)
|
| 84 |
+
with st.expander("์ฐธ๊ณ ๋ฌธ์ ํ์ธ"):
|
| 85 |
+
st.markdown(source_documents[0].metadata['source'], help=source_documents[0].page_content)
|
| 86 |
+
st.markdown(source_documents[1].metadata['source'], help=source_documents[1].page_content)
|
| 87 |
+
st.markdown(source_documents[2].metadata['source'], help=source_documents[2].page_content)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 88 |
|
| 89 |
+
# Add assistant message to chat history
|
| 90 |
+
st.session_state.messages.append({"role": "assistant", "content": response})
|
| 91 |
+
|
| 92 |
+
|
| 93 |
+
#ํ ํฐํ ์ํค๋ ๊ณณ
|
| 94 |
def tiktoken_len(text):
|
| 95 |
tokenizer = tiktoken.get_encoding("cl100k_base")
|
| 96 |
tokens = tokenizer.encode(text)
|
| 97 |
return len(tokens)
|
| 98 |
|
| 99 |
+
#pdfload์ฝ๋
|
| 100 |
def get_text(docs):
|
| 101 |
doc_list = []
|
| 102 |
|
|
|
|
| 112 |
doc_list.extend(documents)
|
| 113 |
return doc_list
|
| 114 |
|
| 115 |
+
#textsplitter ์ฝ๋
|
| 116 |
def get_text_chunks(text):
|
| 117 |
text_splitter = RecursiveCharacterTextSplitter(
|
| 118 |
chunk_size=1000,
|
|
|
|
| 122 |
chunks = text_splitter.split_documents(text)
|
| 123 |
return chunks
|
| 124 |
|
| 125 |
+
#์๋ฒ ๋ฉ ๋ฐ ๋ฒกํฐ์ ์ฅ ์ฝ๋
|
| 126 |
def get_vectorstore(text_chunks):
|
| 127 |
embeddings = HuggingFaceEmbeddings(
|
| 128 |
model_name="jhgan/ko-sroberta-multitask",
|
|
|
|
| 132 |
vectordb = FAISS.from_documents(text_chunks, embeddings)
|
| 133 |
return vectordb
|
| 134 |
|
| 135 |
+
#๋ฆฌํธ๋ฆฌ๋ฒ ๋ฐ llm์ฝ๋
|
| 136 |
def get_conversation_chain(vetorestore, openai_api_key):
|
| 137 |
llm = ChatOpenAI(openai_api_key=openai_api_key, model_name='gpt-3.5-turbo', temperature=0)
|
| 138 |
conversation_chain = ConversationalRetrievalChain.from_llm(
|