Update app.py
Browse files
app.py
CHANGED
|
@@ -23,19 +23,31 @@ if not PINECONE_API_KEY:
|
|
| 23 |
# Initialize Pinecone
|
| 24 |
pc = Pinecone(api_key=PINECONE_API_KEY)
|
| 25 |
# Configuration
|
| 26 |
-
|
|
|
|
|
|
|
| 27 |
|
| 28 |
-
# Load embedding
|
| 29 |
-
#
|
|
|
|
| 30 |
import os
|
| 31 |
from huggingface_hub import login
|
| 32 |
|
| 33 |
-
# Login to Hugging Face if token is available
|
| 34 |
hf_token = os.getenv('HF_TOKEN')
|
| 35 |
if hf_token:
|
| 36 |
login(token=hf_token)
|
| 37 |
|
| 38 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 39 |
|
| 40 |
# Load dynamic metadata
|
| 41 |
def load_dynamic_metadata():
|
|
@@ -64,10 +76,13 @@ def get_language_specific_data(proposal_data, field, language='en'):
|
|
| 64 |
|
| 65 |
return ''
|
| 66 |
|
| 67 |
-
def get_pinecone_index():
|
| 68 |
-
"""Get the
|
| 69 |
try:
|
| 70 |
-
|
|
|
|
|
|
|
|
|
|
| 71 |
except Exception as e:
|
| 72 |
logger.error(f"Error accessing Pinecone index: {e}")
|
| 73 |
return None
|
|
@@ -79,11 +94,13 @@ def semantic_search(query: str, top_k=1, category_filter=None, language='en'):
|
|
| 79 |
global DYNAMIC_METADATA
|
| 80 |
DYNAMIC_METADATA = load_dynamic_metadata()
|
| 81 |
|
| 82 |
-
pc_index = get_pinecone_index()
|
| 83 |
if not pc_index:
|
| 84 |
return []
|
| 85 |
|
| 86 |
-
|
|
|
|
|
|
|
| 87 |
|
| 88 |
# Build filter if category is specified
|
| 89 |
filter_dict = {"source": "budget_proposals"}
|
|
@@ -196,7 +213,7 @@ def get_all_proposals(category_filter=None, language='en'):
|
|
| 196 |
global DYNAMIC_METADATA
|
| 197 |
DYNAMIC_METADATA = load_dynamic_metadata()
|
| 198 |
|
| 199 |
-
pc_index = get_pinecone_index()
|
| 200 |
if not pc_index:
|
| 201 |
logger.warning("Pinecone index not available, returning empty list")
|
| 202 |
return []
|
|
@@ -207,8 +224,11 @@ def get_all_proposals(category_filter=None, language='en'):
|
|
| 207 |
filter_dict["category"] = category_filter
|
| 208 |
|
| 209 |
# Query with a dummy vector to get all documents
|
| 210 |
-
# Use
|
| 211 |
-
|
|
|
|
|
|
|
|
|
|
| 212 |
res = pc_index.query(
|
| 213 |
vector=dummy_vector,
|
| 214 |
top_k=100, # Get all proposals
|
|
|
|
| 23 |
# Initialize Pinecone
|
| 24 |
pc = Pinecone(api_key=PINECONE_API_KEY)
|
| 25 |
# Configuration
|
| 26 |
+
# Index names for different models
|
| 27 |
+
INDEX_NAME_EN = "budget-proposals-optimized" # 384 dimensions for all-MiniLM-L6-v2 (English documents)
|
| 28 |
+
INDEX_NAME_MULTILINGUAL = "budget-proposals-embeddinggemma" # 768 dimensions for EmbeddingGemma (Sinhala/Tamil)
|
| 29 |
|
| 30 |
+
# Load embedding models - Hybrid approach for better performance
|
| 31 |
+
# English: all-MiniLM-L6-v2 (better domain understanding)
|
| 32 |
+
# Sinhala/Tamil: EmbeddingGemma-300m (better multilingual support)
|
| 33 |
import os
|
| 34 |
from huggingface_hub import login
|
| 35 |
|
| 36 |
+
# Login to Hugging Face if token is available (for EmbeddingGemma)
|
| 37 |
hf_token = os.getenv('HF_TOKEN')
|
| 38 |
if hf_token:
|
| 39 |
login(token=hf_token)
|
| 40 |
|
| 41 |
+
# Load both models
|
| 42 |
+
embed_model_en = SentenceTransformer("all-MiniLM-L6-v2")
|
| 43 |
+
embed_model_multilingual = SentenceTransformer("google/embeddinggemma-300m")
|
| 44 |
+
|
| 45 |
+
def get_embedding_model(language):
|
| 46 |
+
"""Get the appropriate embedding model based on language"""
|
| 47 |
+
if language == 'en':
|
| 48 |
+
return embed_model_en
|
| 49 |
+
else: # si, ta, or any other language
|
| 50 |
+
return embed_model_multilingual
|
| 51 |
|
| 52 |
# Load dynamic metadata
|
| 53 |
def load_dynamic_metadata():
|
|
|
|
| 76 |
|
| 77 |
return ''
|
| 78 |
|
| 79 |
+
def get_pinecone_index(language='en'):
|
| 80 |
+
"""Get the appropriate Pinecone index based on language"""
|
| 81 |
try:
|
| 82 |
+
if language == 'en':
|
| 83 |
+
return pc.Index(INDEX_NAME_EN)
|
| 84 |
+
else: # si, ta, or any other language
|
| 85 |
+
return pc.Index(INDEX_NAME_MULTILINGUAL)
|
| 86 |
except Exception as e:
|
| 87 |
logger.error(f"Error accessing Pinecone index: {e}")
|
| 88 |
return None
|
|
|
|
| 94 |
global DYNAMIC_METADATA
|
| 95 |
DYNAMIC_METADATA = load_dynamic_metadata()
|
| 96 |
|
| 97 |
+
pc_index = get_pinecone_index(language)
|
| 98 |
if not pc_index:
|
| 99 |
return []
|
| 100 |
|
| 101 |
+
# Use language-specific embedding model
|
| 102 |
+
model = get_embedding_model(language)
|
| 103 |
+
query_emb = model.encode(query).tolist()
|
| 104 |
|
| 105 |
# Build filter if category is specified
|
| 106 |
filter_dict = {"source": "budget_proposals"}
|
|
|
|
| 213 |
global DYNAMIC_METADATA
|
| 214 |
DYNAMIC_METADATA = load_dynamic_metadata()
|
| 215 |
|
| 216 |
+
pc_index = get_pinecone_index(language)
|
| 217 |
if not pc_index:
|
| 218 |
logger.warning("Pinecone index not available, returning empty list")
|
| 219 |
return []
|
|
|
|
| 224 |
filter_dict["category"] = category_filter
|
| 225 |
|
| 226 |
# Query with a dummy vector to get all documents
|
| 227 |
+
# Use language-specific vector dimensions
|
| 228 |
+
if language == 'en':
|
| 229 |
+
dummy_vector = [0.1] * 384 # 384 is the dimension of all-MiniLM-L6-v2
|
| 230 |
+
else: # si, ta, or any other language
|
| 231 |
+
dummy_vector = [0.1] * 768 # 768 is the dimension of EmbeddingGemma-300m
|
| 232 |
res = pc_index.query(
|
| 233 |
vector=dummy_vector,
|
| 234 |
top_k=100, # Get all proposals
|