File size: 6,589 Bytes
36ec84c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
import streamlit as st
import pandas as pd
import numpy as np
import joblib
import plotly.express as px
import base64
from sklearn.preprocessing import LabelEncoder

# === Thresholds for Rule-Based Classification ===
thresholds = {
    'pH_min': 6.0, 'pH_max': 9.0,
    'BOD': 3.0,
    'COD': 25.0,
    'TSS': 50.0,
    'DO': 4.0,
    'Nitrate': 10.0,
    'Phosphate': 0.2,
    'FecalColiform': 1000
}

def categorize_sample(row):
    pH = row['pH (Potential Hydrogen)']
    BOD = row['BOD (Biological Oxygen Demand) (mg/L)']
    COD = row['COD (Chemical Oxygen Demand) (mg/L)']
    DO = row['DO (Dissolved Oxygen) (mg/L)']
    nitrate = row['NO3N (Nitrat) (mg/L)']
    phosphate = row['Total Phosphat (mg/L)']
    fecal = row['Fecal Coliform (MPN/100 mL)']
    TSS = row['TSS (Total Suspended Solid) (mg/L)']

    if (
        thresholds['pH_min'] <= pH <= thresholds['pH_max'] and
        BOD <= thresholds['BOD'] and
        COD <= thresholds['COD'] and
        DO >= thresholds['DO'] and
        nitrate <= thresholds['Nitrate'] and
        phosphate <= thresholds['Phosphate'] and
        fecal <= thresholds['FecalColiform'] and
        TSS <= thresholds['TSS']
    ):
        return "Safe", "Safe"

    categories = []
    if COD > thresholds['COD'] * 1.5 or pH < thresholds['pH_min'] or pH > thresholds['pH_max'] or TSS > thresholds['TSS']:
        categories.append("Chemical")
    if BOD > thresholds['BOD'] or DO < thresholds['DO'] or fecal > thresholds['FecalColiform'] or TSS > thresholds['TSS']:
        categories.append("Biological")
    if nitrate > thresholds['Nitrate'] or phosphate > thresholds['Phosphate'] or TSS > thresholds['TSS']:
        categories.append("Eutrophication")

    priority_order = ["Chemical", "Biological", "Eutrophication"]
    for cat in priority_order:
        if cat in categories:
            return ", ".join(categories), cat

    return "Safe", "Safe"

# === Streamlit App ===
def run():
    svc_model = joblib.load("svc_model.pkl")
    xgb_model = joblib.load("xgb_model.pkl")
    imputer = joblib.load("imputer.pkl")
    scaler = joblib.load("scaler.pkl")
    label_encoder = joblib.load("label_encoder.pkl")

    feature_cols = [
        "pH (Potential Hydrogen)",
        "BOD (Biological Oxygen Demand) (mg/L)",
        "COD (Chemical Oxygen Demand) (mg/L)",
        "TSS (Total Suspended Solid) (mg/L)",
        "DO (Dissolved Oxygen) (mg/L)",
        "NO3N (Nitrat) (mg/L)",
        "Total Phosphat (mg/L)",
        "Fecal Coliform (MPN/100 mL)"
    ]

    st.set_page_config(page_title="Water Quality Classifier Dashboard", layout="wide")
    st.title("πŸ’§ Water Quality Prediction and Rule-Based Evaluation")

    model_choice = st.selectbox("Select Model", ["SVC + SMOTETomek", "XGBoost + SMOTETomek"])
    model = svc_model if model_choice == "SVC + SMOTETomek" else xgb_model

    st.header("πŸ“₯ Input Data")
    data_option = st.radio("Choose Input Method", ["Upload CSV", "Manual Entry"])
    input_df = None

    if data_option == "Upload CSV":
        uploaded_file = st.file_uploader("Upload your CSV file", type=["csv"])
        if uploaded_file:
            df = pd.read_csv(uploaded_file)
            missing_cols = [col for col in feature_cols if col not in df.columns]
            if missing_cols:
                st.error(f"Missing required columns: {missing_cols}")
            else:
                input_df = df[feature_cols]
    else:
        with st.form("manual_form"):
            ph = st.number_input("pH", min_value=0.0, max_value=14.0, value=7.0)
            bod = st.number_input("BOD (mg/L)", min_value=0.0, max_value=100.0, value=2.0)
            cod = st.number_input("COD (mg/L)", min_value=0.0, max_value=500.0, value=10.0)
            tss = st.number_input("TSS (mg/L)", min_value=0.0, max_value=1000.0, value=20.0)
            do = st.number_input("DO (mg/L)", min_value=0.0, max_value=20.0, value=5.0)
            no3 = st.number_input("NO3N (mg/L)", min_value=0.0, max_value=10.0, value=1.0)
            tp = st.number_input("Total Phosphat (mg/L)", min_value=0.0, max_value=10.0, value=0.1)
            fecal = st.number_input("Fecal Coliform (MPN/100 mL)", min_value=0.0, max_value=1000000.0, value=500.0)
            submitted = st.form_submit_button("Predict")

        if submitted:
            input_df = pd.DataFrame([{
                "pH (Potential Hydrogen)": ph,
                "BOD (Biological Oxygen Demand) (mg/L)": bod,
                "COD (Chemical Oxygen Demand) (mg/L)": cod,
                "TSS (Total Suspended Solid) (mg/L)": tss,
                "DO (Dissolved Oxygen) (mg/L)": do,
                "NO3N (Nitrat) (mg/L)": no3,
                "Total Phosphat (mg/L)": tp,
                "Fecal Coliform (MPN/100 mL)": fecal
            }])

    if input_df is not None:
        st.header("πŸ” Prediction Results")

        try:
            X_imp = imputer.transform(input_df)
            X_scaled = scaler.transform(X_imp)
            y_proba = model.predict_proba(X_scaled)
            y_pred = model.predict(X_scaled)
            pred_class = label_encoder.inverse_transform(y_pred)[0]

            # Rule-Based Evaluation
            rule_violations, rule_label = categorize_sample(input_df.iloc[0])

            # Display results
            st.markdown(f"### πŸ§ͺ ML Predicted Class: `{pred_class}`")
            st.markdown(f"### πŸ“ Rule-Based Class: `{rule_label}`")
            st.markdown(f"**Violations Detected:** {rule_violations}")

            fig_pie = px.pie(
                names=label_encoder.classes_,
                values=y_proba[0],
                title="Prediction Probability per Class",
                color_discrete_sequence=px.colors.qualitative.Set3
            )
            st.plotly_chart(fig_pie, use_container_width=True)

            # Export Results
            input_df["Predicted Class (ML)"] = pred_class
            input_df["Rule-Based Class"] = rule_label
            input_df["Rule-Based Violations"] = rule_violations
            input_df[[f"Prob_{cls}" for cls in label_encoder.classes_]] = y_proba
            csv = input_df.to_csv(index=False)
            b64 = base64.b64encode(csv.encode()).decode()
            href = f'<a href="data:file/csv;base64,{b64}" download="prediction_result.csv">Download CSV File</a>'
            st.subheader("πŸ“€ Download Result")
            st.markdown(href, unsafe_allow_html=True)

        except Exception as e:
            st.error(f"Prediction failed: {e}")

    st.markdown("---")
    st.caption("Developed with ❀️ for integrated ML + expert rule water quality system")