darly9991 commited on
Commit
1d3e918
·
verified ·
1 Parent(s): 0e0e25d

Upload 4 files

Browse files
Files changed (4) hide show
  1. app.py +91 -0
  2. label_encoder.pkl +3 -0
  3. svc_pipeline.pkl +3 -0
  4. xgb_pipeline.pkl +3 -0
app.py ADDED
@@ -0,0 +1,91 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+ import pandas as pd
3
+ import numpy as np
4
+ import joblib
5
+ import plotly.express as px
6
+ import plotly.graph_objects as go
7
+ import altair as alt
8
+ import base64
9
+ from sklearn.calibration import calibration_curve
10
+ from sklearn.preprocessing import LabelEncoder
11
+ from sklearn.metrics import accuracy_score, f1_score, log_loss, confusion_matrix
12
+ from sklearn.utils.multiclass import unique_labels
13
+
14
+ # === Load models ===
15
+ svc_model = joblib.load("svc_pipeline.pkl")
16
+ xgb_model = joblib.load("xgb_pipeline.pkl")
17
+
18
+ # === App Config ===
19
+ st.set_page_config(page_title="Water Quality Classifier Dashboard", layout="wide")
20
+ st.title("💧 Water Quality Prediction and Model Dashboard")
21
+
22
+ # === Model Selector ===
23
+ model_choice = st.selectbox("Select Model", ["SVC + SMOTETomek", "XGBoost + SMOTETomek"])
24
+ model = svc_model if model_choice == "SVC + SMOTETomek" else xgb_model
25
+
26
+ # === Input Section ===
27
+ st.header("📥 Input Data")
28
+ data_option = st.radio("Input Method", ["Upload CSV", "Manual Entry"])
29
+ input_df = None
30
+
31
+ if data_option == "Upload CSV":
32
+ uploaded_file = st.file_uploader("Upload your CSV file", type=["csv"])
33
+ if uploaded_file:
34
+ input_df = pd.read_csv(uploaded_file)
35
+ else:
36
+ with st.form("manual_form"):
37
+ ph = st.number_input("pH", min_value=1.0, max_value=14.0, value=7.0)
38
+ bod = st.number_input("BOD (mg/L)", min_value=0.0, max_value=100.0, value=2.0)
39
+ cod = st.number_input("COD (mg/L)", min_value=0.0, max_value=500.0, value=10.0)
40
+ tss = st.number_input("TSS (mg/L)", min_value=0.0, max_value=1000.0, value=20.0)
41
+ do = st.number_input("DO (mg/L)", min_value=0.0, max_value=20.0, value=5.0)
42
+ no3 = st.number_input("NO3N (mg/L)", min_value=0.0, max_value=10.0, value=1.0)
43
+ tp = st.number_input("Total Phosphat (mg/L)", min_value=0.0, max_value=10.0, value=0.1)
44
+ fecal = st.number_input("Fecal Coliform (MPN/100mL)", min_value=0.0, max_value=1000000.0, value=500.0)
45
+ submitted = st.form_submit_button("Predict")
46
+
47
+ if submitted:
48
+ input_df = pd.DataFrame([{
49
+ "pH (Potential Hydrogen)": ph,
50
+ "BOD (Biological Oxygen Demand) (mg/L)": bod,
51
+ "COD (Chemical Oxygen Demand) (mg/L)": cod,
52
+ "TSS (Total Suspended Solid) (mg/L)": tss,
53
+ "DO (Dissolved Oxygen) (mg/L)": do,
54
+ "NO3N (Nitrat) (mg/L)": no3,
55
+ "Total Phosphat (mg/L)": tp,
56
+ "Fecal Coliform (MPN/100 mL)": fecal
57
+ }])
58
+
59
+ # === Prediction Section ===
60
+ if input_df is not None:
61
+ st.header("🔍 Prediction Results")
62
+ y_proba = model.predict_proba(input_df)
63
+ y_pred = model.predict(input_df)
64
+
65
+ label_encoder = LabelEncoder()
66
+ label_encoder.classes_ = np.array(["Biological", "Chemical", "Eutrophication", "Safe"])
67
+ pred_class = label_encoder.inverse_transform(y_pred)[0]
68
+
69
+ st.markdown(f"### 🧪 Predicted Class: `{pred_class}`")
70
+
71
+ fig_pie = px.pie(
72
+ names=label_encoder.classes_,
73
+ values=y_proba[0],
74
+ title="Prediction Probability per Class",
75
+ color_discrete_sequence=px.colors.qualitative.Set3
76
+ )
77
+ st.plotly_chart(fig_pie, use_container_width=True)
78
+
79
+ # === Download CSV ===
80
+ st.subheader("📤 Download Prediction")
81
+ input_df["Predicted Class"] = pred_class
82
+ input_df[[f"Prob_{c}" for c in label_encoder.classes_]] = y_proba
83
+ csv = input_df.to_csv(index=False)
84
+ b64 = base64.b64encode(csv.encode()).decode()
85
+ href = f'<a href="data:file/csv;base64,{b64}" download="prediction_result.csv">Download CSV File</a>'
86
+ st.markdown(href, unsafe_allow_html=True)
87
+
88
+ # === Footer ===
89
+ st.markdown("---")
90
+ st.markdown("Developed with ❤️ for real-world decision support in water quality monitoring.")
91
+
label_encoder.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:32f95b42cdc2676ef36ff0ff99037431b1ba4d2601e88c04568d99b40e9dca48
3
+ size 582
svc_pipeline.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:533f0eaa1d3aeb6526056beb04b2e72404d1dbeb06e1e4eeac37e7c2b19fa2bd
3
+ size 238650
xgb_pipeline.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:66ce23ee36f7901b5f734a652cd43f788efbd2fd52343f3c486e6ce93b332d5b
3
+ size 605211