darly9991 commited on
Commit
72ff765
·
verified ·
1 Parent(s): 823ab74

Upload 6 files

Browse files
Files changed (6) hide show
  1. imputer.pkl +3 -0
  2. label_encoder.pkl +3 -0
  3. scaler.pkl +3 -0
  4. svc_model.pkl +3 -0
  5. water_quality_index.py +114 -0
  6. xgb_model.pkl +3 -0
imputer.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ca769650d144cf1dc143fffc9c368ef47469de6671430be2d594823d424c294d
3
+ size 13713
label_encoder.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:32f95b42cdc2676ef36ff0ff99037431b1ba4d2601e88c04568d99b40e9dca48
3
+ size 582
scaler.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:863c08f64c1de60c260b4c92fbccd6891f8987244f9b5c3dff420a93f1975427
3
+ size 807
svc_model.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f28410514081ad74524f60f8658661427acc3406c8da8c3f0096f14d03017348
3
+ size 146369
water_quality_index.py ADDED
@@ -0,0 +1,114 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+ import pandas as pd
3
+ import numpy as np
4
+ import joblib
5
+ import plotly.express as px
6
+ import base64
7
+ from sklearn.preprocessing import LabelEncoder
8
+
9
+ def run():
10
+ # === Load Trained Objects ===
11
+ svc_model = joblib.load("svc_model.pkl")
12
+ xgb_model = joblib.load("xgb_model.pkl")
13
+ imputer = joblib.load("imputer.pkl")
14
+ scaler = joblib.load("scaler.pkl")
15
+ label_encoder = joblib.load("label_encoder.pkl") # already fitted
16
+
17
+ # === Expected Columns ===
18
+ feature_cols = [
19
+ "pH (Potential Hydrogen)",
20
+ "BOD (Biological Oxygen Demand) (mg/L)",
21
+ "COD (Chemical Oxygen Demand) (mg/L)",
22
+ "TSS (Total Suspended Solid) (mg/L)",
23
+ "DO (Dissolved Oxygen) (mg/L)",
24
+ "NO3N (Nitrat) (mg/L)",
25
+ "Total Phosphat (mg/L)",
26
+ "Fecal Coliform (MPN/100 mL)"
27
+ ]
28
+
29
+ # === Streamlit Setup ===
30
+ st.set_page_config(page_title="Water Quality Classifier Dashboard", layout="wide")
31
+ st.title("💧 Water Quality Prediction and Dashboard")
32
+
33
+ # === Model Selector ===
34
+ model_choice = st.selectbox("Select Model", ["SVC + SMOTETomek", "XGBoost + SMOTETomek"])
35
+ model = svc_model if model_choice == "SVC + SMOTETomek" else xgb_model
36
+
37
+ # === Input Section ===
38
+ st.header("📥 Input Data")
39
+ data_option = st.radio("Choose Input Method", ["Upload CSV", "Manual Entry"])
40
+ input_df = None
41
+
42
+ if data_option == "Upload CSV":
43
+ uploaded_file = st.file_uploader("Upload your CSV file", type=["csv"])
44
+ if uploaded_file:
45
+ df = pd.read_csv(uploaded_file)
46
+ missing_cols = [col for col in feature_cols if col not in df.columns]
47
+ if missing_cols:
48
+ st.error(f"Missing required columns: {missing_cols}")
49
+ else:
50
+ input_df = df[feature_cols]
51
+ else:
52
+ with st.form("manual_form"):
53
+ ph = st.number_input("pH", min_value=0.0, max_value=14.0, value=7.0)
54
+ bod = st.number_input("BOD (mg/L)", min_value=0.0, max_value=100.0, value=2.0)
55
+ cod = st.number_input("COD (mg/L)", min_value=0.0, max_value=500.0, value=10.0)
56
+ tss = st.number_input("TSS (mg/L)", min_value=0.0, max_value=1000.0, value=20.0)
57
+ do = st.number_input("DO (mg/L)", min_value=0.0, max_value=20.0, value=5.0)
58
+ no3 = st.number_input("NO3N (mg/L)", min_value=0.0, max_value=10.0, value=1.0)
59
+ tp = st.number_input("Total Phosphat (mg/L)", min_value=0.0, max_value=10.0, value=0.1)
60
+ fecal = st.number_input("Fecal Coliform (MPN/100 mL)", min_value=0.0, max_value=1000000.0, value=500.0)
61
+ submitted = st.form_submit_button("Predict")
62
+
63
+ if submitted:
64
+ input_df = pd.DataFrame([{
65
+ "pH (Potential Hydrogen)": ph,
66
+ "BOD (Biological Oxygen Demand) (mg/L)": bod,
67
+ "COD (Chemical Oxygen Demand) (mg/L)": cod,
68
+ "TSS (Total Suspended Solid) (mg/L)": tss,
69
+ "DO (Dissolved Oxygen) (mg/L)": do,
70
+ "NO3N (Nitrat) (mg/L)": no3,
71
+ "Total Phosphat (mg/L)": tp,
72
+ "Fecal Coliform (MPN/100 mL)": fecal
73
+ }])
74
+
75
+ # === Prediction Section ===
76
+ if input_df is not None:
77
+ st.header("🔍 Prediction Results")
78
+
79
+ try:
80
+ # Preprocessing
81
+ X_imp = imputer.transform(input_df)
82
+ X_scaled = scaler.transform(X_imp)
83
+
84
+ # Prediction
85
+ y_proba = model.predict_proba(X_scaled)
86
+ y_pred = model.predict(X_scaled)
87
+ pred_class = label_encoder.inverse_transform(y_pred)[0]
88
+
89
+ st.markdown(f"### 🧪 Predicted Class: `{pred_class}`")
90
+
91
+ fig_pie = px.pie(
92
+ names=label_encoder.classes_,
93
+ values=y_proba[0],
94
+ title="Prediction Probability per Class",
95
+ color_discrete_sequence=px.colors.qualitative.Set3
96
+ )
97
+ st.plotly_chart(fig_pie, use_container_width=True)
98
+
99
+ # Export
100
+ st.subheader("📤 Download Prediction")
101
+ input_df["Predicted Class"] = pred_class
102
+ input_df[[f"Prob_{cls}" for cls in label_encoder.classes_]] = y_proba
103
+ csv = input_df.to_csv(index=False)
104
+ b64 = base64.b64encode(csv.encode()).decode()
105
+ href = f'<a href="data:file/csv;base64,{b64}" download="prediction_result.csv">Download CSV File</a>'
106
+ st.markdown(href, unsafe_allow_html=True)
107
+
108
+ except Exception as e:
109
+ st.error(f"Prediction failed: {e}")
110
+
111
+ # === Footer ===
112
+ st.markdown("---")
113
+ st.caption("Developed with ❤️ for real-time water quality analysis")
114
+
xgb_model.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:dbb9a7b0ad941aad43124b0bc77282a36dad4e2b0baa2a75bebafed1deba3ad5
3
+ size 512625