Spaces:
Runtime error
Runtime error
| import streamlit as st | |
| import pandas as pd | |
| import numpy as np | |
| import pickle | |
| import json | |
| #Load All files | |
| #Load model | |
| with open('list_cat_cols.txt', 'r') as file_1: | |
| list_cat_col = json.load(file_1) | |
| with open('list_num_cols.txt', 'r') as file_2: | |
| list_num_col = json.load(file_2) | |
| with open('encoder.pkl', 'rb') as file_3: | |
| model_encoder = pickle.load(file_3) | |
| with open('scaler.pkl', 'rb') as file_4: | |
| model_scaler = pickle.load(file_4) | |
| with open('model_lin_reg.pkl', 'rb') as file_5: | |
| model_lin_reg = pickle.load(file_5) | |
| def run(): | |
| with st.form('form_fifa_2022'): | |
| #nama, value untuk default value | |
| name = st.text_input('Name', value = ' ') | |
| #age, min_value untuk minimum nilai yang bisa diisi, max_value maksimum nilai yang bisa diisi | |
| age = st.number_input('Age', value = 25, min_value = 15, max_value = 60, help = 'isi dengan usia pemain') | |
| #height | |
| height = st.number_input('Height', value = 170, min_value = 100, help = 'in cm') | |
| weight = st.slider('Weight', value = 70, min_value = 50, max_value = 150) | |
| price = st.number_input('Price', value = 0) | |
| st.markdown('---') | |
| #index untuk default value di selctbox/radio button | |
| attacking_work_rate = st.selectbox('Attacking Work Rate', ('Low', 'Medium', 'High'), index = 1) | |
| defensive_work_rate = st.radio('Defensive Work Rate', ('Low', 'Medium', 'High'), index = 1) | |
| pace = st.number_input('Pace', min_value = 0, max_value = 100, value = 50) | |
| shooting = st.number_input('Shooting Score', min_value = 0, max_value = 100, value = 50) | |
| passing = st.number_input('Passing Score', min_value = 0, max_value = 100, value = 50) | |
| dribbling = st.number_input('Dribbling Score', min_value = 0, max_value = 100, value = 50) | |
| defending = st.number_input('Defending Score', min_value = 0, max_value = 100, value = 50) | |
| physicality = st.number_input('Pysicality Score', min_value = 0, max_value = 100, value = 50) | |
| #bikin submit button form | |
| submitted = st.form_submit_button('Predict') | |
| data_inf = { | |
| 'Name' : name, | |
| 'Age' : age, | |
| 'Height' : height, | |
| 'Weight' : weight, | |
| 'Price' : price, | |
| 'AttackingWorkRate' : attacking_work_rate, | |
| 'DefensiveWorkRate' : defensive_work_rate, | |
| 'PaceTotal' : pace, | |
| 'ShootingTotal' : shooting, | |
| 'PassingTotal' : passing, | |
| 'DribblingTotal' : dribbling, | |
| 'DefendingTotal' : defending, | |
| 'PhysicalityTotal' : physicality | |
| } | |
| data_inf = pd.DataFrame([data_inf]) | |
| st.dataframe(data_inf) | |
| if submitted: | |
| #split between numerical and categorical columns | |
| data_inf_num = data_inf[list_num_col] | |
| data_inf_cat = data_inf[list_cat_col] | |
| #feature scaling and encoding | |
| data_inf_num_scaled = model_scaler.transform(data_inf_num) | |
| data_inf_cat_encoded = model_encoder.transform(data_inf_cat) | |
| data_inf_final = np.concatenate([data_inf_num_scaled, data_inf_cat_encoded], axis = 1) | |
| #predict using linear reg model | |
| y_pred_inf = model_lin_reg.predict(data_inf_final) | |
| st.write('## Rating : ', str(int(y_pred_inf))) | |
| if __name__ == '__main__': | |
| run() | |