Spaces:
Build error
Build error
| import gradio as gr | |
| import nltk | |
| import librosa | |
| from transformers import pipeline | |
| from transformers.file_utils import cached_path, hf_bucket_url | |
| import os, zipfile | |
| from transformers import Wav2Vec2Processor, Wav2Vec2ForCTC, Wav2Vec2Tokenizer | |
| from datasets import load_dataset | |
| import torch | |
| import kenlm | |
| import torchaudio | |
| from pyctcdecode import Alphabet, BeamSearchDecoderCTC, LanguageModel | |
| """Vietnamese speech2text""" | |
| cache_dir = './cache/' | |
| processor = Wav2Vec2Processor.from_pretrained("nguyenvulebinh/wav2vec2-base-vietnamese-250h", cache_dir=cache_dir) | |
| vi_model = Wav2Vec2ForCTC.from_pretrained("nguyenvulebinh/wav2vec2-base-vietnamese-250h", cache_dir=cache_dir) | |
| lm_file = hf_bucket_url("nguyenvulebinh/wav2vec2-base-vietnamese-250h", filename='vi_lm_4grams.bin.zip') | |
| lm_file = cached_path(lm_file,cache_dir=cache_dir) | |
| with zipfile.ZipFile(lm_file, 'r') as zip_ref: | |
| zip_ref.extractall(cache_dir) | |
| lm_file = cache_dir + 'vi_lm_4grams.bin' | |
| def get_decoder_ngram_model(tokenizer, ngram_lm_path): | |
| vocab_dict = tokenizer.get_vocab() | |
| sort_vocab = sorted((value, key) for (key, value) in vocab_dict.items()) | |
| vocab = [x[1] for x in sort_vocab][:-2] | |
| vocab_list = vocab | |
| # convert ctc blank character representation | |
| vocab_list[tokenizer.pad_token_id] = "" | |
| # replace special characters | |
| vocab_list[tokenizer.unk_token_id] = "" | |
| # vocab_list[tokenizer.bos_token_id] = "" | |
| # vocab_list[tokenizer.eos_token_id] = "" | |
| # convert space character representation | |
| vocab_list[tokenizer.word_delimiter_token_id] = " " | |
| # specify ctc blank char index, since conventially it is the last entry of the logit matrix | |
| alphabet = Alphabet.build_alphabet(vocab_list, ctc_token_idx=tokenizer.pad_token_id) | |
| lm_model = kenlm.Model(ngram_lm_path) | |
| decoder = BeamSearchDecoderCTC(alphabet, | |
| language_model=LanguageModel(lm_model)) | |
| return decoder | |
| ngram_lm_model = get_decoder_ngram_model(processor.tokenizer, lm_file) | |
| # define function to read in sound file | |
| def speech_file_to_array_fn(path, max_seconds=10): | |
| batch = {"file": path} | |
| speech_array, sampling_rate = torchaudio.load(batch["file"]) | |
| if sampling_rate != 16000: | |
| transform = torchaudio.transforms.Resample(orig_freq=sampling_rate, | |
| new_freq=16000) | |
| speech_array = transform(speech_array) | |
| speech_array = speech_array[0] | |
| if max_seconds > 0: | |
| speech_array = speech_array[:max_seconds*16000] | |
| batch["speech"] = speech_array.numpy() | |
| batch["sampling_rate"] = 16000 | |
| return batch | |
| # tokenize | |
| def speech2text_vi(audio): | |
| # read in sound file | |
| # load dummy dataset and read soundfiles | |
| ds = speech_file_to_array_fn(audio.name) | |
| # infer model | |
| input_values = processor( | |
| ds["speech"], | |
| sampling_rate=ds["sampling_rate"], | |
| return_tensors="pt" | |
| ).input_values | |
| # decode ctc output | |
| logits = vi_model(input_values).logits[0] | |
| pred_ids = torch.argmax(logits, dim=-1) | |
| greedy_search_output = processor.decode(pred_ids) | |
| beam_search_output = ngram_lm_model.decode(logits.cpu().detach().numpy(), beam_width=500) | |
| return beam_search_output | |
| """Machine translation""" | |
| vien_model_checkpoint = "datnth1709/finetuned_HelsinkiNLP-opus-mt-vi-en_PhoMT" | |
| vien_translator = pipeline("translation", model=vien_model_checkpoint) | |
| def translate_vi2en(Vietnamese): | |
| return vien_translator(Vietnamese)[0]['translation_text'] | |
| """ Inference""" | |
| def inference_vien(audio): | |
| vi_text = speech2text_vi(audio) | |
| en_text = translate_vi2en(vi_text) | |
| return vi_text, en_text | |
| def transcribe_vi_1(audio, state_en=""): | |
| ds = speech_file_to_array_fn(audio.name) | |
| # infer model | |
| input_values = processor( | |
| ds["speech"], | |
| sampling_rate=ds["sampling_rate"], | |
| return_tensors="pt" | |
| ).input_values | |
| # decode ctc output | |
| logits = vi_model(input_values).logits[0] | |
| pred_ids = torch.argmax(logits, dim=-1) | |
| greedy_search_output = processor.decode(pred_ids) | |
| beam_search_output = ngram_lm_model.decode(logits.cpu().detach().numpy(), beam_width=500) | |
| en_text = translate_vi2en(beam_search_output) | |
| state_en += en_text + " " | |
| return state_en, state_en | |
| """Gradio demo""" | |
| vi_example_text = ["Có phải bạn đang muốn tìm mua nhà ở ngoại ô thành phố Hồ Chí Minh không?", | |
| "Ánh mắt ta chạm nhau. Chỉ muốn ngắm anh lâu thật lâu.", | |
| "Nếu như một câu nói có thể khiến em vui."] | |
| vi_example_voice =[['vi_speech_01.wav'], ['vi_speech_02.wav'], ['vi_speech_03.wav']] | |
| gr.Interface( | |
| fn=transcribe_vi_1, | |
| inputs=[ | |
| gr.Audio(source="microphone", label="Input Vietnamese Audio", type="file", streaming=True), | |
| "state", | |
| ], | |
| outputs= [ | |
| "text", | |
| "state", | |
| ], | |
| live=True).launch() | |