Spaces:
Build error
Build error
Commit
·
2f12a3f
1
Parent(s):
e6ce204
update inference
Browse files
README.md
CHANGED
|
@@ -1,7 +1,7 @@
|
|
| 1 |
---
|
| 2 |
-
title:
|
| 3 |
-
emoji:
|
| 4 |
-
colorFrom:
|
| 5 |
colorTo: gray
|
| 6 |
sdk: gradio
|
| 7 |
sdk_version: 3.3.1
|
|
|
|
| 1 |
---
|
| 2 |
+
title: Realtime S2T MT Demo
|
| 3 |
+
emoji: 🥑
|
| 4 |
+
colorFrom: blue
|
| 5 |
colorTo: gray
|
| 6 |
sdk: gradio
|
| 7 |
sdk_version: 3.3.1
|
app.py
CHANGED
|
@@ -77,65 +77,13 @@ def speech2text_vi(audio):
|
|
| 77 |
return beam_search_output
|
| 78 |
|
| 79 |
|
| 80 |
-
"""English speech2text"""
|
| 81 |
-
nltk.download("punkt")
|
| 82 |
-
# Loading the model and the tokenizer
|
| 83 |
-
model_name = "facebook/s2t-small-librispeech-asr"
|
| 84 |
-
eng_tokenizer = Wav2Vec2Tokenizer.from_pretrained(model_name)
|
| 85 |
-
eng_model = Wav2Vec2ForCTC.from_pretrained(model_name)
|
| 86 |
-
|
| 87 |
-
def load_data(input_file):
|
| 88 |
-
""" Function for resampling to ensure that the speech input is sampled at 16KHz.
|
| 89 |
-
"""
|
| 90 |
-
# read the file
|
| 91 |
-
speech, sample_rate = librosa.load(input_file)
|
| 92 |
-
# make it 1-D
|
| 93 |
-
if len(speech.shape) > 1:
|
| 94 |
-
speech = speech[:, 0] + speech[:, 1]
|
| 95 |
-
# Resampling at 16KHz since wav2vec2-base-960h is pretrained and fine-tuned on speech audio sampled at 16 KHz.
|
| 96 |
-
if sample_rate != 16000:
|
| 97 |
-
speech = librosa.resample(speech, sample_rate, 16000)
|
| 98 |
-
return speech
|
| 99 |
-
|
| 100 |
-
def correct_casing(input_sentence):
|
| 101 |
-
""" This function is for correcting the casing of the generated transcribed text
|
| 102 |
-
"""
|
| 103 |
-
sentences = nltk.sent_tokenize(input_sentence)
|
| 104 |
-
return (' '.join([s.replace(s[0], s[0].capitalize(), 1) for s in sentences]))
|
| 105 |
-
|
| 106 |
-
|
| 107 |
-
def speech2text_en(input_file):
|
| 108 |
-
"""This function generates transcripts for the provided audio input
|
| 109 |
-
"""
|
| 110 |
-
speech = load_data(input_file)
|
| 111 |
-
# Tokenize
|
| 112 |
-
input_values = eng_tokenizer(speech, return_tensors="pt").input_values
|
| 113 |
-
# Take logits
|
| 114 |
-
logits = eng_model(input_values).logits
|
| 115 |
-
# Take argmax
|
| 116 |
-
predicted_ids = torch.argmax(logits, dim=-1)
|
| 117 |
-
# Get the words from predicted word ids
|
| 118 |
-
transcription = eng_tokenizer.decode(predicted_ids[0])
|
| 119 |
-
# Output is all upper case
|
| 120 |
-
transcription = correct_casing(transcription.lower())
|
| 121 |
-
return transcription
|
| 122 |
-
|
| 123 |
-
|
| 124 |
"""Machine translation"""
|
| 125 |
vien_model_checkpoint = "datnth1709/finetuned_HelsinkiNLP-opus-mt-vi-en_PhoMT"
|
| 126 |
-
envi_model_checkpoint = "datnth1709/finetuned_HelsinkiNLP-opus-mt-en-vi_PhoMT"
|
| 127 |
vien_translator = pipeline("translation", model=vien_model_checkpoint)
|
| 128 |
-
envi_translator = pipeline("translation", model=envi_model_checkpoint)
|
| 129 |
-
|
| 130 |
|
| 131 |
def translate_vi2en(Vietnamese):
|
| 132 |
return vien_translator(Vietnamese)[0]['translation_text']
|
| 133 |
|
| 134 |
-
def translate_en2vi(English):
|
| 135 |
-
return envi_translator(English)[0]['translation_text']
|
| 136 |
-
|
| 137 |
-
|
| 138 |
-
|
| 139 |
|
| 140 |
""" Inference"""
|
| 141 |
def inference_vien(audio):
|
|
@@ -143,46 +91,6 @@ def inference_vien(audio):
|
|
| 143 |
en_text = translate_vi2en(vi_text)
|
| 144 |
return vi_text, en_text
|
| 145 |
|
| 146 |
-
def inference_envi(audio):
|
| 147 |
-
en_text = speech2text_en(audio)
|
| 148 |
-
vi_text = translate_en2vi(en_text)
|
| 149 |
-
return en_text, vi_text
|
| 150 |
-
|
| 151 |
-
def transcribe_vi(audio, state_vi="", state_en=""):
|
| 152 |
-
ds = speech_file_to_array_fn(audio.name)
|
| 153 |
-
# infer model
|
| 154 |
-
input_values = processor(
|
| 155 |
-
ds["speech"],
|
| 156 |
-
sampling_rate=ds["sampling_rate"],
|
| 157 |
-
return_tensors="pt"
|
| 158 |
-
).input_values
|
| 159 |
-
# decode ctc output
|
| 160 |
-
logits = vi_model(input_values).logits[0]
|
| 161 |
-
pred_ids = torch.argmax(logits, dim=-1)
|
| 162 |
-
greedy_search_output = processor.decode(pred_ids)
|
| 163 |
-
beam_search_output = ngram_lm_model.decode(logits.cpu().detach().numpy(), beam_width=500)
|
| 164 |
-
state_vi += beam_search_output + " "
|
| 165 |
-
en_text = translate_vi2en(beam_search_output)
|
| 166 |
-
state_en += en_text + " "
|
| 167 |
-
return state_vi, state_en
|
| 168 |
-
|
| 169 |
-
def transcribe_en(audio, state_en="", state_vi=""):
|
| 170 |
-
speech = load_data(audio)
|
| 171 |
-
# Tokenize
|
| 172 |
-
input_values = eng_tokenizer(speech, return_tensors="pt").input_values
|
| 173 |
-
# Take logits
|
| 174 |
-
logits = eng_model(input_values).logits
|
| 175 |
-
# Take argmax
|
| 176 |
-
predicted_ids = torch.argmax(logits, dim=-1)
|
| 177 |
-
# Get the words from predicted word ids
|
| 178 |
-
transcription = eng_tokenizer.decode(predicted_ids[0])
|
| 179 |
-
# Output is all upper case
|
| 180 |
-
transcription = correct_casing(transcription.lower())
|
| 181 |
-
state_en += transcription + "+"
|
| 182 |
-
vi_text = translate_en2vi(transcription)
|
| 183 |
-
state_vi += vi_text + "+"
|
| 184 |
-
return state_en, state_vi
|
| 185 |
-
|
| 186 |
def transcribe_vi_1(audio, state_en=""):
|
| 187 |
ds = speech_file_to_array_fn(audio.name)
|
| 188 |
# infer model
|
|
@@ -200,69 +108,23 @@ def transcribe_vi_1(audio, state_en=""):
|
|
| 200 |
state_en += en_text + " "
|
| 201 |
return state_en, state_en
|
| 202 |
|
| 203 |
-
def transcribe_en_1(audio, state_vi=""):
|
| 204 |
-
speech = load_data(audio)
|
| 205 |
-
# Tokenize
|
| 206 |
-
input_values = eng_tokenizer(speech, return_tensors="pt").input_values
|
| 207 |
-
# Take logits
|
| 208 |
-
logits = eng_model(input_values).logits
|
| 209 |
-
# Take argmax
|
| 210 |
-
predicted_ids = torch.argmax(logits, dim=-1)
|
| 211 |
-
# Get the words from predicted word ids
|
| 212 |
-
transcription = eng_tokenizer.decode(predicted_ids[0])
|
| 213 |
-
# Output is all upper case
|
| 214 |
-
transcription = correct_casing(transcription.lower())
|
| 215 |
-
vi_text = translate_en2vi(transcription)
|
| 216 |
-
state_vi += vi_text + "+"
|
| 217 |
-
return state_vi, state_vi
|
| 218 |
-
|
| 219 |
"""Gradio demo"""
|
| 220 |
-
|
| 221 |
vi_example_text = ["Có phải bạn đang muốn tìm mua nhà ở ngoại ô thành phố Hồ Chí Minh không?",
|
| 222 |
"Ánh mắt ta chạm nhau. Chỉ muốn ngắm anh lâu thật lâu.",
|
| 223 |
"Nếu như một câu nói có thể khiến em vui."]
|
| 224 |
vi_example_voice =[['vi_speech_01.wav'], ['vi_speech_02.wav'], ['vi_speech_03.wav']]
|
| 225 |
|
| 226 |
-
|
| 227 |
-
|
| 228 |
-
|
| 229 |
-
|
| 230 |
-
|
| 231 |
-
|
| 232 |
-
|
| 233 |
-
|
| 234 |
-
|
| 235 |
-
|
| 236 |
-
|
| 237 |
-
|
| 238 |
-
|
| 239 |
-
|
| 240 |
-
"state",
|
| 241 |
-
],
|
| 242 |
-
outputs= [
|
| 243 |
-
"text",
|
| 244 |
-
"state",
|
| 245 |
-
|
| 246 |
-
],
|
| 247 |
-
examples=vi_example_voice,
|
| 248 |
-
live=True).launch()
|
| 249 |
-
|
| 250 |
-
|
| 251 |
-
with gr.Tabs():
|
| 252 |
-
with gr.TabItem("En-Vi Realtime Translation"):
|
| 253 |
-
gr.Interface(
|
| 254 |
-
fn=transcribe_en_1,
|
| 255 |
-
inputs=[
|
| 256 |
-
gr.Audio(source="microphone", label="Input English Audio", type="filepath", streaming=True),
|
| 257 |
-
"state",
|
| 258 |
-
],
|
| 259 |
-
outputs= [
|
| 260 |
-
"text",
|
| 261 |
-
"state",
|
| 262 |
-
|
| 263 |
-
],
|
| 264 |
-
examples=en_example_voice,
|
| 265 |
-
live=True).launch()
|
| 266 |
-
|
| 267 |
-
if __name__ == "__main__":
|
| 268 |
-
demo.launch()
|
|
|
|
| 77 |
return beam_search_output
|
| 78 |
|
| 79 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 80 |
"""Machine translation"""
|
| 81 |
vien_model_checkpoint = "datnth1709/finetuned_HelsinkiNLP-opus-mt-vi-en_PhoMT"
|
|
|
|
| 82 |
vien_translator = pipeline("translation", model=vien_model_checkpoint)
|
|
|
|
|
|
|
| 83 |
|
| 84 |
def translate_vi2en(Vietnamese):
|
| 85 |
return vien_translator(Vietnamese)[0]['translation_text']
|
| 86 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 87 |
|
| 88 |
""" Inference"""
|
| 89 |
def inference_vien(audio):
|
|
|
|
| 91 |
en_text = translate_vi2en(vi_text)
|
| 92 |
return vi_text, en_text
|
| 93 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 94 |
def transcribe_vi_1(audio, state_en=""):
|
| 95 |
ds = speech_file_to_array_fn(audio.name)
|
| 96 |
# infer model
|
|
|
|
| 108 |
state_en += en_text + " "
|
| 109 |
return state_en, state_en
|
| 110 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 111 |
"""Gradio demo"""
|
|
|
|
| 112 |
vi_example_text = ["Có phải bạn đang muốn tìm mua nhà ở ngoại ô thành phố Hồ Chí Minh không?",
|
| 113 |
"Ánh mắt ta chạm nhau. Chỉ muốn ngắm anh lâu thật lâu.",
|
| 114 |
"Nếu như một câu nói có thể khiến em vui."]
|
| 115 |
vi_example_voice =[['vi_speech_01.wav'], ['vi_speech_02.wav'], ['vi_speech_03.wav']]
|
| 116 |
|
| 117 |
+
with gr.TabItem("Vi-En Realtime Translation"):
|
| 118 |
+
gr.Interface(
|
| 119 |
+
fn=transcribe_vi_1,
|
| 120 |
+
inputs=[
|
| 121 |
+
gr.Audio(source="microphone", label="Input Vietnamese Audio", type="file", streaming=True),
|
| 122 |
+
"state",
|
| 123 |
+
],
|
| 124 |
+
outputs= [
|
| 125 |
+
"text",
|
| 126 |
+
"state",
|
| 127 |
+
|
| 128 |
+
],
|
| 129 |
+
examples=vi_example_voice,
|
| 130 |
+
live=True).launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|