Spaces:
Build error
Build error
Commit
·
468a13d
1
Parent(s):
1b245f0
update source
Browse files- .gitignore +7 -0
- README.md +4 -3
- app.py +278 -0
- en_speech_01.wav +0 -0
- en_speech_02.wav +0 -0
- en_speech_03.wav +0 -0
- packages.txt +1 -0
- requirements.txt +16 -0
- vi_speech_01.wav +0 -0
- vi_speech_02.wav +0 -0
- vi_speech_03.wav +0 -0
.gitignore
ADDED
|
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Ignore everything in this directory
|
| 2 |
+
__pycache__
|
| 3 |
+
.idea
|
| 4 |
+
.git
|
| 5 |
+
.vs
|
| 6 |
+
.vscode
|
| 7 |
+
.ipynb_checkpoints
|
README.md
CHANGED
|
@@ -1,12 +1,13 @@
|
|
| 1 |
---
|
| 2 |
-
title:
|
| 3 |
-
emoji:
|
| 4 |
-
colorFrom:
|
| 5 |
colorTo: gray
|
| 6 |
sdk: gradio
|
| 7 |
sdk_version: 3.3.1
|
| 8 |
app_file: app.py
|
| 9 |
pinned: false
|
|
|
|
| 10 |
---
|
| 11 |
|
| 12 |
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
|
|
|
| 1 |
---
|
| 2 |
+
title: FantasticFour S2T MT Demo
|
| 3 |
+
emoji: 🐠
|
| 4 |
+
colorFrom: red
|
| 5 |
colorTo: gray
|
| 6 |
sdk: gradio
|
| 7 |
sdk_version: 3.3.1
|
| 8 |
app_file: app.py
|
| 9 |
pinned: false
|
| 10 |
+
license: apache-2.0
|
| 11 |
---
|
| 12 |
|
| 13 |
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
app.py
ADDED
|
@@ -0,0 +1,278 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import nltk
|
| 3 |
+
import librosa
|
| 4 |
+
from optimum.onnxruntime import ORTModelForSeq2SeqLM
|
| 5 |
+
|
| 6 |
+
from transformers import pipeline, TranslationPipeline, AutoTokenizer, TranslationPipeline
|
| 7 |
+
from transformers import Wav2Vec2Processor, Wav2Vec2ForCTC, Wav2Vec2Tokenizer
|
| 8 |
+
from transformers.file_utils import cached_path, hf_bucket_url
|
| 9 |
+
import os, zipfile
|
| 10 |
+
from datasets import load_dataset
|
| 11 |
+
import torch
|
| 12 |
+
import kenlm
|
| 13 |
+
import torchaudio
|
| 14 |
+
from pyctcdecode import Alphabet, BeamSearchDecoderCTC, LanguageModel
|
| 15 |
+
device = torch.device(0 if torch.cuda.is_available() else "cpu")
|
| 16 |
+
|
| 17 |
+
"""Vietnamese speech2text"""
|
| 18 |
+
cache_dir = './cache/'
|
| 19 |
+
processor = Wav2Vec2Processor.from_pretrained("nguyenvulebinh/wav2vec2-base-vietnamese-250h", cache_dir=cache_dir)
|
| 20 |
+
vi_model = Wav2Vec2ForCTC.from_pretrained("nguyenvulebinh/wav2vec2-base-vietnamese-250h", cache_dir=cache_dir)
|
| 21 |
+
lm_file = hf_bucket_url("nguyenvulebinh/wav2vec2-base-vietnamese-250h", filename='vi_lm_4grams.bin.zip')
|
| 22 |
+
lm_file = cached_path(lm_file,cache_dir=cache_dir)
|
| 23 |
+
with zipfile.ZipFile(lm_file, 'r') as zip_ref:
|
| 24 |
+
zip_ref.extractall(cache_dir)
|
| 25 |
+
lm_file = cache_dir + 'vi_lm_4grams.bin'
|
| 26 |
+
|
| 27 |
+
def get_decoder_ngram_model(tokenizer, ngram_lm_path):
|
| 28 |
+
vocab_dict = tokenizer.get_vocab()
|
| 29 |
+
sort_vocab = sorted((value, key) for (key, value) in vocab_dict.items())
|
| 30 |
+
vocab = [x[1] for x in sort_vocab][:-2]
|
| 31 |
+
vocab_list = vocab
|
| 32 |
+
# convert ctc blank character representation
|
| 33 |
+
vocab_list[tokenizer.pad_token_id] = ""
|
| 34 |
+
# replace special characters
|
| 35 |
+
vocab_list[tokenizer.unk_token_id] = ""
|
| 36 |
+
# vocab_list[tokenizer.bos_token_id] = ""
|
| 37 |
+
# vocab_list[tokenizer.eos_token_id] = ""
|
| 38 |
+
# convert space character representation
|
| 39 |
+
vocab_list[tokenizer.word_delimiter_token_id] = " "
|
| 40 |
+
# specify ctc blank char index, since conventially it is the last entry of the logit matrix
|
| 41 |
+
alphabet = Alphabet.build_alphabet(vocab_list, ctc_token_idx=tokenizer.pad_token_id)
|
| 42 |
+
lm_model = kenlm.Model(ngram_lm_path)
|
| 43 |
+
decoder = BeamSearchDecoderCTC(alphabet,
|
| 44 |
+
language_model=LanguageModel(lm_model))
|
| 45 |
+
return decoder
|
| 46 |
+
ngram_lm_model = get_decoder_ngram_model(processor.tokenizer, lm_file)
|
| 47 |
+
|
| 48 |
+
# define function to read in sound file
|
| 49 |
+
def speech_file_to_array_fn(path, max_seconds=10):
|
| 50 |
+
batch = {"file": path}
|
| 51 |
+
speech_array, sampling_rate = torchaudio.load(batch["file"])
|
| 52 |
+
if sampling_rate != 16000:
|
| 53 |
+
transform = torchaudio.transforms.Resample(orig_freq=sampling_rate,
|
| 54 |
+
new_freq=16000)
|
| 55 |
+
speech_array = transform(speech_array)
|
| 56 |
+
speech_array = speech_array[0]
|
| 57 |
+
if max_seconds > 0:
|
| 58 |
+
speech_array = speech_array[:max_seconds*16000]
|
| 59 |
+
batch["speech"] = speech_array.numpy()
|
| 60 |
+
batch["sampling_rate"] = 16000
|
| 61 |
+
return batch
|
| 62 |
+
|
| 63 |
+
# tokenize
|
| 64 |
+
def speech2text_vi(audio):
|
| 65 |
+
# read in sound file
|
| 66 |
+
# load dummy dataset and read soundfiles
|
| 67 |
+
ds = speech_file_to_array_fn(audio.name)
|
| 68 |
+
# infer model
|
| 69 |
+
input_values = processor(
|
| 70 |
+
ds["speech"],
|
| 71 |
+
sampling_rate=ds["sampling_rate"],
|
| 72 |
+
return_tensors="pt"
|
| 73 |
+
).input_values
|
| 74 |
+
# decode ctc output
|
| 75 |
+
logits = vi_model(input_values).logits[0]
|
| 76 |
+
pred_ids = torch.argmax(logits, dim=-1)
|
| 77 |
+
greedy_search_output = processor.decode(pred_ids)
|
| 78 |
+
beam_search_output = ngram_lm_model.decode(logits.cpu().detach().numpy(), beam_width=500)
|
| 79 |
+
return beam_search_output
|
| 80 |
+
|
| 81 |
+
|
| 82 |
+
"""English speech2text"""
|
| 83 |
+
nltk.download("punkt")
|
| 84 |
+
# Loading the model and the tokenizer
|
| 85 |
+
model_name = "facebook/wav2vec2-base-960h"
|
| 86 |
+
eng_tokenizer = Wav2Vec2Tokenizer.from_pretrained(model_name)
|
| 87 |
+
eng_model = Wav2Vec2ForCTC.from_pretrained(model_name)
|
| 88 |
+
|
| 89 |
+
def load_data(input_file):
|
| 90 |
+
""" Function for resampling to ensure that the speech input is sampled at 16KHz.
|
| 91 |
+
"""
|
| 92 |
+
# read the file
|
| 93 |
+
speech, sample_rate = librosa.load(input_file)
|
| 94 |
+
# make it 1-D
|
| 95 |
+
if len(speech.shape) > 1:
|
| 96 |
+
speech = speech[:, 0] + speech[:, 1]
|
| 97 |
+
# Resampling at 16KHz since wav2vec2-base-960h is pretrained and fine-tuned on speech audio sampled at 16 KHz.
|
| 98 |
+
if sample_rate != 16000:
|
| 99 |
+
speech = librosa.resample(speech, sample_rate, 16000)
|
| 100 |
+
return speech
|
| 101 |
+
|
| 102 |
+
def correct_casing(input_sentence):
|
| 103 |
+
""" This function is for correcting the casing of the generated transcribed text
|
| 104 |
+
"""
|
| 105 |
+
sentences = nltk.sent_tokenize(input_sentence)
|
| 106 |
+
return (' '.join([s.replace(s[0], s[0].capitalize(), 1) for s in sentences]))
|
| 107 |
+
|
| 108 |
+
|
| 109 |
+
def speech2text_en(input_file):
|
| 110 |
+
"""This function generates transcripts for the provided audio input
|
| 111 |
+
"""
|
| 112 |
+
speech = load_data(input_file)
|
| 113 |
+
# Tokenize
|
| 114 |
+
input_values = eng_tokenizer(speech, return_tensors="pt").input_values
|
| 115 |
+
# Take logits
|
| 116 |
+
logits = eng_model(input_values).logits
|
| 117 |
+
# Take argmax
|
| 118 |
+
predicted_ids = torch.argmax(logits, dim=-1)
|
| 119 |
+
# Get the words from predicted word ids
|
| 120 |
+
transcription = eng_tokenizer.decode(predicted_ids[0])
|
| 121 |
+
# Output is all upper case
|
| 122 |
+
transcription = correct_casing(transcription.lower())
|
| 123 |
+
return transcription
|
| 124 |
+
|
| 125 |
+
|
| 126 |
+
"""Machine translation"""
|
| 127 |
+
vien_model_checkpoint = "datnth1709/finetuned_HelsinkiNLP-opus-mt-vi-en_PhoMT"
|
| 128 |
+
envi_model_checkpoint = "datnth1709/finetuned_HelsinkiNLP-opus-mt-en-vi_PhoMT"
|
| 129 |
+
# vien_translator = pipeline("translation", model=vien_model_checkpoint)
|
| 130 |
+
# envi_translator = pipeline("translation", model=envi_model_checkpoint)
|
| 131 |
+
|
| 132 |
+
vien_tokenizer = AutoTokenizer.from_pretrained(vien_model_checkpoint, return_tensors="pt")
|
| 133 |
+
vien_model = ORTModelForSeq2SeqLM.from_pretrained(vien_model_checkpoint)
|
| 134 |
+
vien_translator = TranslationPipeline(model=vien_model, tokenizer=vien_tokenizer,clean_up_tokenization_spaces=True, device=device)
|
| 135 |
+
|
| 136 |
+
envi_tokenizer = AutoTokenizer.from_pretrained(envi_model_checkpoint, return_tensors="pt")
|
| 137 |
+
envi_model = ORTModelForSeq2SeqLM.from_pretrained(envi_model_checkpoint)
|
| 138 |
+
envi_translator = TranslationPipeline(model=envi_model, tokenizer=envi_tokenizer,clean_up_tokenization_spaces=True, device=device)
|
| 139 |
+
|
| 140 |
+
|
| 141 |
+
def translate_vi2en(Vietnamese):
|
| 142 |
+
return vien_translator(Vietnamese)[0]['translation_text']
|
| 143 |
+
|
| 144 |
+
def translate_en2vi(English):
|
| 145 |
+
return envi_translator(English)[0]['translation_text']
|
| 146 |
+
|
| 147 |
+
|
| 148 |
+
|
| 149 |
+
|
| 150 |
+
""" Inference"""
|
| 151 |
+
def inference_vien(audio):
|
| 152 |
+
vi_text = speech2text_vi(audio)
|
| 153 |
+
en_text = translate_vi2en(vi_text)
|
| 154 |
+
return vi_text, en_text
|
| 155 |
+
|
| 156 |
+
def inference_envi(audio):
|
| 157 |
+
en_text = speech2text_en(audio)
|
| 158 |
+
vi_text = translate_en2vi(en_text)
|
| 159 |
+
return en_text, vi_text
|
| 160 |
+
|
| 161 |
+
def transcribe_vi(audio, state_vi="", state_en=""):
|
| 162 |
+
ds = speech_file_to_array_fn(audio.name)
|
| 163 |
+
# infer model
|
| 164 |
+
input_values = processor(
|
| 165 |
+
ds["speech"],
|
| 166 |
+
sampling_rate=ds["sampling_rate"],
|
| 167 |
+
return_tensors="pt"
|
| 168 |
+
).input_values
|
| 169 |
+
# decode ctc output
|
| 170 |
+
logits = vi_model(input_values).logits[0]
|
| 171 |
+
pred_ids = torch.argmax(logits, dim=-1)
|
| 172 |
+
greedy_search_output = processor.decode(pred_ids)
|
| 173 |
+
beam_search_output = ngram_lm_model.decode(logits.cpu().detach().numpy(), beam_width=500)
|
| 174 |
+
state_vi += beam_search_output + " "
|
| 175 |
+
en_text = translate_vi2en(beam_search_output)
|
| 176 |
+
state_en += en_text + " "
|
| 177 |
+
return state_vi, state_en
|
| 178 |
+
|
| 179 |
+
def transcribe_en(audio, state_en="", state_vi=""):
|
| 180 |
+
speech = load_data(audio)
|
| 181 |
+
# Tokenize
|
| 182 |
+
input_values = eng_tokenizer(speech, return_tensors="pt").input_values
|
| 183 |
+
# Take logits
|
| 184 |
+
logits = eng_model(input_values).logits
|
| 185 |
+
# Take argmax
|
| 186 |
+
predicted_ids = torch.argmax(logits, dim=-1)
|
| 187 |
+
# Get the words from predicted word ids
|
| 188 |
+
transcription = eng_tokenizer.decode(predicted_ids[0])
|
| 189 |
+
# Output is all upper case
|
| 190 |
+
transcription = correct_casing(transcription.lower())
|
| 191 |
+
state_en += transcription + "+"
|
| 192 |
+
vi_text = translate_en2vi(transcription)
|
| 193 |
+
state_vi += vi_text + "+"
|
| 194 |
+
return state_en, state_vi
|
| 195 |
+
|
| 196 |
+
def transcribe_vi_1(audio, state_en=""):
|
| 197 |
+
ds = speech_file_to_array_fn(audio.name)
|
| 198 |
+
# infer model
|
| 199 |
+
input_values = processor(
|
| 200 |
+
ds["speech"],
|
| 201 |
+
sampling_rate=ds["sampling_rate"],
|
| 202 |
+
return_tensors="pt"
|
| 203 |
+
).input_values
|
| 204 |
+
# decode ctc output
|
| 205 |
+
logits = vi_model(input_values).logits[0]
|
| 206 |
+
pred_ids = torch.argmax(logits, dim=-1)
|
| 207 |
+
greedy_search_output = processor.decode(pred_ids)
|
| 208 |
+
beam_search_output = ngram_lm_model.decode(logits.cpu().detach().numpy(), beam_width=500)
|
| 209 |
+
en_text = translate_vi2en(beam_search_output)
|
| 210 |
+
state_en += en_text + " "
|
| 211 |
+
return state_en, state_en
|
| 212 |
+
|
| 213 |
+
def transcribe_en_1(audio, state_vi=""):
|
| 214 |
+
speech = load_data(audio)
|
| 215 |
+
# Tokenize
|
| 216 |
+
input_values = eng_tokenizer(speech, return_tensors="pt").input_values
|
| 217 |
+
# Take logits
|
| 218 |
+
logits = eng_model(input_values).logits
|
| 219 |
+
# Take argmax
|
| 220 |
+
predicted_ids = torch.argmax(logits, dim=-1)
|
| 221 |
+
# Get the words from predicted word ids
|
| 222 |
+
transcription = eng_tokenizer.decode(predicted_ids[0])
|
| 223 |
+
# Output is all upper case
|
| 224 |
+
transcription = correct_casing(transcription.lower())
|
| 225 |
+
vi_text = translate_en2vi(transcription)
|
| 226 |
+
state_vi += vi_text + "+"
|
| 227 |
+
return state_vi, state_vi
|
| 228 |
+
|
| 229 |
+
"""Gradio demo"""
|
| 230 |
+
|
| 231 |
+
vi_example_text = ["Có phải bạn đang muốn tìm mua nhà ở ngoại ô thành phố Hồ Chí Minh không?",
|
| 232 |
+
"Ánh mắt ta chạm nhau. Chỉ muốn ngắm anh lâu thật lâu.",
|
| 233 |
+
"Nếu như một câu nói có thể khiến em vui."]
|
| 234 |
+
vi_example_voice =[['vi_speech_01.wav'], ['vi_speech_02.wav'], ['vi_speech_03.wav']]
|
| 235 |
+
|
| 236 |
+
en_example_text = ["According to a study by Statista, the global AI market is set to grow up to 54 percent every single year.",
|
| 237 |
+
"As one of the world's greatest cities, Air New Zealand is proud to add the Big Apple to its list of 29 international destinations.",
|
| 238 |
+
"And yet, earlier this month, I found myself at Halloween Horror Nights at Universal Orlando Resort, one of the most popular Halloween events in the US among hardcore horror buffs."
|
| 239 |
+
]
|
| 240 |
+
en_example_voice =[['en_speech_01.wav'], ['en_speech_02.wav'], ['en_speech_03.wav']]
|
| 241 |
+
|
| 242 |
+
|
| 243 |
+
with gr.Blocks() as demo:
|
| 244 |
+
with gr.Tabs():
|
| 245 |
+
with gr.TabItem("Vi-En Realtime Translation"):
|
| 246 |
+
gr.Interface(
|
| 247 |
+
fn=transcribe_vi_1,
|
| 248 |
+
inputs=[
|
| 249 |
+
gr.Audio(source="microphone", label="Input Vietnamese Audio", type="file", streaming=True),
|
| 250 |
+
"state",
|
| 251 |
+
],
|
| 252 |
+
outputs= [
|
| 253 |
+
"text",
|
| 254 |
+
"state",
|
| 255 |
+
|
| 256 |
+
],
|
| 257 |
+
examples=vi_example_voice,
|
| 258 |
+
live=True).launch()
|
| 259 |
+
|
| 260 |
+
|
| 261 |
+
with gr.Tabs():
|
| 262 |
+
with gr.TabItem("En-Vi Realtime Translation"):
|
| 263 |
+
gr.Interface(
|
| 264 |
+
fn=transcribe_en_1,
|
| 265 |
+
inputs=[
|
| 266 |
+
gr.Audio(source="microphone", label="Input English Audio", type="filepath", streaming=True),
|
| 267 |
+
"state",
|
| 268 |
+
],
|
| 269 |
+
outputs= [
|
| 270 |
+
"text",
|
| 271 |
+
"state",
|
| 272 |
+
|
| 273 |
+
],
|
| 274 |
+
examples=en_example_voice,
|
| 275 |
+
live=True).launch()
|
| 276 |
+
|
| 277 |
+
if __name__ == "__main__":
|
| 278 |
+
demo.launch()
|
en_speech_01.wav
ADDED
|
Binary file (816 kB). View file
|
|
|
en_speech_02.wav
ADDED
|
Binary file (238 kB). View file
|
|
|
en_speech_03.wav
ADDED
|
Binary file (751 kB). View file
|
|
|
packages.txt
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
libsndfile1
|
requirements.txt
ADDED
|
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
torch==1.9.0
|
| 2 |
+
torchaudio==0.9.0
|
| 3 |
+
transformers==4.9.2
|
| 4 |
+
transformers[sentencepiece]
|
| 5 |
+
datasets==1.11.0
|
| 6 |
+
pyctcdecode==v0.1.0
|
| 7 |
+
speechbrain
|
| 8 |
+
pydub
|
| 9 |
+
kenlm
|
| 10 |
+
pyctcdecode
|
| 11 |
+
soundfile
|
| 12 |
+
ffmpeg-python
|
| 13 |
+
gradio
|
| 14 |
+
nltk
|
| 15 |
+
librosa
|
| 16 |
+
https://github.com/kpu/kenlm/archive/master.zip
|
vi_speech_01.wav
ADDED
|
Binary file (120 kB). View file
|
|
|
vi_speech_02.wav
ADDED
|
Binary file (49.6 kB). View file
|
|
|
vi_speech_03.wav
ADDED
|
Binary file (76.8 kB). View file
|
|
|