File size: 7,982 Bytes
519b145 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 |
# Dual-Path RAG Architecture
## Overview
Dual-Path RAG là kiến trúc tối ưu cho chatbot legal, tách biệt 2 đường xử lý:
- **Fast Path**: Golden dataset (200 câu phổ biến) → <200ms, 100% accuracy
- **Slow Path**: Full RAG pipeline → 4-8s, 99.99% accuracy
## Architecture
```
User Query
↓
Intent Classification
↓
Dual-Path Router
├─ Keyword Router (exact/fuzzy match)
├─ Semantic Similarity Search (threshold 0.85)
└─ LLM Router (optional, for edge cases)
↓
┌─────────────────┬─────────────────┐
│ Fast Path │ Slow Path │
│ (<200ms) │ (4-8s) │
│ │ │
│ Golden Dataset │ Full RAG: │
│ - Exact match │ - Hybrid Search │
│ - Fuzzy match │ - Top 20 docs │
│ - Similarity │ - LLM Generation │
│ │ - Guardrails │
│ 100% accuracy │ 99.99% accuracy │
└─────────────────┴─────────────────┘
↓
Response + Routing Log
```
## Components
### 1. Database Models
**GoldenQuery**: Stores verified queries and responses
- `query`, `query_normalized`, `query_embedding`
- `intent`, `response_message`, `response_data`
- `verified_by`, `usage_count`, `accuracy_score`
**QueryRoutingLog**: Logs routing decisions for monitoring
- `route` (fast_path/slow_path)
- `router_method` (keyword/similarity/llm/default)
- `response_time_ms`, `similarity_score`
### 2. Router Components
**KeywordRouter**: Fast keyword-based matching
- Exact match (normalized query)
- Fuzzy match (70% word overlap)
- ~1-5ms latency
**DualPathRouter**: Main router with hybrid logic
- Step 1: Keyword routing (fastest)
- Step 2: Semantic similarity (threshold 0.85)
- Step 3: LLM router fallback (optional)
- Default: Slow Path
### 3. Path Handlers
**FastPathHandler**: Returns cached responses from golden dataset
- Increments usage count
- Returns verified response instantly
**SlowPathHandler**: Full RAG pipeline
- Hybrid search (BM25 + vector)
- Top 20 documents
- LLM generation with structured output
- Auto-save high-quality responses to golden dataset
## Setup
### 1. Run Migration
```bash
cd backend/hue_portal
python manage.py migrate core
```
### 2. Import Initial Golden Dataset
```bash
# Import from JSON file
python manage.py manage_golden_dataset import --file golden_queries.json --format json
# Or import from CSV
python manage.py manage_golden_dataset import --file golden_queries.csv --format csv
```
### 3. Generate Embeddings (for semantic search)
```bash
# Generate embeddings for all queries
python manage.py manage_golden_dataset update_embeddings
# Or for specific query
python manage.py manage_golden_dataset update_embeddings --query-id 123
```
## Management Commands
### Import Queries
```bash
python manage.py manage_golden_dataset import \
--file golden_queries.json \
--format json \
--verify-by legal_expert \
--skip-embeddings # Skip if embeddings will be generated later
```
### Verify Query
```bash
python manage.py manage_golden_dataset verify \
--query-id 123 \
--verify-by gpt4 \
--accuracy 1.0
```
### Update Embeddings
```bash
python manage.py manage_golden_dataset update_embeddings \
--batch-size 10
```
### View Statistics
```bash
python manage.py manage_golden_dataset stats
```
### Export Dataset
```bash
python manage.py manage_golden_dataset export \
--file exported_queries.json \
--active-only
```
### Delete Query
```bash
# Soft delete (deactivate)
python manage.py manage_golden_dataset delete --query-id 123 --soft
# Hard delete
python manage.py manage_golden_dataset delete --query-id 123
```
## API Endpoints
### Chat Endpoint (unchanged)
```
POST /api/chatbot/chat/
{
"message": "Mức phạt vượt đèn đỏ là bao nhiêu?",
"session_id": "optional-uuid",
"reset_session": false
}
```
Response includes routing metadata:
```json
{
"message": "...",
"intent": "search_fine",
"results": [...],
"_source": "fast_path", // or "slow_path"
"_routing": {
"path": "fast_path",
"method": "keyword",
"confidence": 1.0
},
"_golden_query_id": 123 // if fast_path
}
```
### Analytics Endpoint
```
GET /api/chatbot/analytics/?days=7&type=all
```
Returns:
- `routing`: Fast/Slow path statistics
- `golden_dataset`: Golden dataset stats
- `performance`: P50/P95/P99 response times
## Golden Dataset Format
### JSON Format
```json
[
{
"query": "Mức phạt vượt đèn đỏ là bao nhiêu?",
"intent": "search_fine",
"response_message": "Mức phạt vượt đèn đỏ là từ 200.000 - 400.000 VNĐ...",
"response_data": {
"message": "...",
"intent": "search_fine",
"results": [...],
"count": 1
},
"verified_by": "legal_expert",
"accuracy_score": 1.0
}
]
```
### CSV Format
```csv
query,intent,response_message,response_data
"Mức phạt vượt đèn đỏ là bao nhiêu?","search_fine","Mức phạt...","{\"message\":\"...\",\"results\":[...]}"
```
## Monitoring
### Routing Statistics
```python
from hue_portal.chatbot.analytics import get_routing_stats
stats = get_routing_stats(days=7)
print(f"Fast Path: {stats['fast_path_percentage']:.1f}%")
print(f"Slow Path: {stats['slow_path_percentage']:.1f}%")
print(f"Fast Path Avg Time: {stats['fast_path_avg_time_ms']:.1f}ms")
print(f"Slow Path Avg Time: {stats['slow_path_avg_time_ms']:.1f}ms")
```
### Golden Dataset Stats
```python
from hue_portal.chatbot.analytics import get_golden_dataset_stats
stats = get_golden_dataset_stats()
print(f"Active queries: {stats['active_queries']}")
print(f"Embedding coverage: {stats['embedding_coverage']:.1f}%")
```
## Best Practices
### 1. Building Golden Dataset
- Start with 50-100 most common queries from logs
- Verify each response manually or with strong LLM (GPT-4/Claude)
- Add queries gradually based on usage patterns
- Target: 200 queries covering 80% of traffic
### 2. Verification Process
- **Weekly review**: Check top 20 most-used queries
- **Monthly audit**: Review all queries for accuracy
- **Update embeddings**: When adding new queries
- **Version control**: Track changes with `version` field
### 3. Tuning Similarity Threshold
- Default: 0.85 (conservative, high precision)
- Lower (0.75): More queries go to Fast Path, but risk false matches
- Higher (0.90): Fewer false matches, but more queries go to Slow Path
### 4. Auto-Save from Slow Path
Slow Path automatically saves high-quality responses:
- Confidence >= 0.95
- Has results
- Message length > 50 chars
- Not already in golden dataset
Review auto-saved queries weekly and verify before activating.
## Troubleshooting
### Fast Path not matching
1. Check if query is normalized correctly
2. Verify golden query exists: `GoldenQuery.objects.filter(query_normalized=...)`
3. Check similarity threshold (may be too high)
4. Ensure embeddings are generated: `update_embeddings`
### Slow performance
1. Check routing logs: `QueryRoutingLog.objects.filter(route='fast_path')`
2. Verify Fast Path percentage (should be ~80%)
3. Check embedding model loading time
4. Monitor database query performance
### Low accuracy
1. Review golden dataset verification
2. Check `accuracy_score` of golden queries
3. Monitor Slow Path responses for quality
4. Update golden queries with better responses
## Expected Performance
- **Fast Path**: <200ms (target: <100ms)
- **Slow Path**: 4-8s (full RAG pipeline)
- **Overall**: 80% queries <200ms, 20% queries 4-8s
- **Cache Hit Rate**: 75-85% (Fast Path usage)
## Next Steps
1. Import initial 200 common queries
2. Generate embeddings for all queries
3. Monitor routing statistics for 1 week
4. Tune similarity threshold based on metrics
5. Expand golden dataset based on usage patterns
|