Spaces:
Sleeping
Sleeping
File size: 39,573 Bytes
2f1e37b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 |
"""
Chatbot with ML-based intent classification for natural language queries.
"""
import json
import re
import unicodedata
from pathlib import Path
from typing import Dict, List, Tuple, Any, Optional
import joblib
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.naive_bayes import MultinomialNB
from sklearn.pipeline import Pipeline
import numpy as np
from hue_portal.core.models import Procedure, Fine, Office, Advisory
from hue_portal.core.search_ml import search_with_ml, expand_query_with_synonyms
def format_fine_amount(min_fine: Optional[float], max_fine: Optional[float]) -> Optional[str]:
"""
Format fine amount as '200.000 - 400.000 VNĐ'.
Args:
min_fine: Minimum fine amount.
max_fine: Maximum fine amount.
Returns:
Formatted string or None if both are None.
"""
if min_fine is not None and max_fine is not None:
# Format with thousand separators (dots for Vietnamese format)
min_str = f"{min_fine:,.0f}".replace(",", ".")
max_str = f"{max_fine:,.0f}".replace(",", ".")
return f"{min_str} - {max_str} VNĐ"
elif min_fine is not None:
min_str = f"{min_fine:,.0f}".replace(",", ".")
return f"{min_str} VNĐ"
return None
# Training data for intent classification (fallback when chưa có model huấn luyện)
INTENT_TRAINING_DATA = {
"search_fine": [
"mức phạt", "phạt bao nhiêu", "tiền phạt", "vi phạm giao thông",
"vượt đèn đỏ", "nồng độ cồn", "không đội mũ bảo hiểm",
"mức phạt là gì", "phạt như thế nào", "hành vi vi phạm",
"điều luật", "nghị định", "mức xử phạt"
],
"search_procedure": [
"thủ tục", "làm thủ tục", "hồ sơ", "điều kiện",
"thủ tục cư trú", "thủ tục ANTT", "thủ tục PCCC",
"cần giấy tờ gì", "làm như thế nào", "quy trình",
"thời hạn", "lệ phí", "nơi nộp"
],
"search_office": [
"địa chỉ", "điểm tiếp dân", "công an", "phòng ban",
"số điện thoại", "giờ làm việc", "nơi tiếp nhận",
"đơn vị nào", "ở đâu", "liên hệ"
],
"search_advisory": [
"cảnh báo", "lừa đảo", "scam", "thủ đoạn",
"cảnh giác", "an toàn", "bảo mật",
"cảnh báo lừa đảo giả danh công an",
"mạo danh cán bộ công an",
"lừa đảo mạo danh",
"cảnh báo an ninh",
"thủ đoạn lừa đảo",
"scam giả danh",
"cảnh giác lừa đảo online",
"lừa đảo qua điện thoại",
"cảnh báo bảo mật",
"mạo danh cán bộ",
"lừa đảo giả danh",
"cảnh báo lừa đảo",
"thủ đoạn scam",
"cảnh giác an toàn",
"lừa đảo online",
"cảnh báo mạo danh"
],
"search_legal": [
"quyết định", "quy định", "thông tư", "nghị quyết",
"văn bản pháp luật", "văn bản quy phạm", "điều lệnh",
"kỷ luật đảng viên", "kỷ luật", "xử lý kỷ luật",
"quyết định 69", "quyết định 264", "qd 69", "qd 264",
"thông tư 02", "tt 02", "điều lệnh cand",
"quy định kỷ luật", "hình thức kỷ luật", "mức kỷ luật",
"xử lý vi phạm", "kỷ luật đảng", "kỷ luật cán bộ",
"quy định về", "theo quyết định", "theo thông tư",
"nội dung quyết định", "nội dung thông tư", "điều khoản"
],
"general_query": [
"xin chào", "giúp tôi", "tư vấn", "hỏi",
"thông tin", "tra cứu", "tìm kiếm"
]
}
# Đường dẫn artefact model
TRAINING_DIR = Path(__file__).resolve().parent / "training"
ARTIFACT_MODEL = TRAINING_DIR / "artifacts" / "intent_model.joblib"
ARTIFACT_METRICS = TRAINING_DIR / "artifacts" / "metrics.json"
# Legal-related keywords reused across intent calibration
LEGAL_KEYWORDS = [
"quyết định",
"quy định",
"thông tư",
"nghị quyết",
"văn bản pháp luật",
"văn bản quy phạm",
"điều lệnh",
"kỷ luật đảng viên",
"kỷ luật",
"xử lý kỷ luật",
"hình thức kỷ luật",
"mức kỷ luật",
"quyết định 69",
"quyết định 264",
"qd 69",
"qd 264",
"thông tư 02",
"tt 02",
]
# Response templates
RESPONSE_TEMPLATES = {
"search_fine": "Tôi tìm thấy {count} mức phạt liên quan đến '{query}':",
"search_procedure": "Tôi tìm thấy {count} thủ tục liên quan đến '{query}':",
"search_office": "Tôi tìm thấy {count} đơn vị liên quan đến '{query}':",
"search_advisory": "Tôi tìm thấy {count} cảnh báo liên quan đến '{query}':",
"general_query": "Tôi có thể giúp bạn tra cứu thông tin về thủ tục, mức phạt, đơn vị hoặc cảnh báo. Bạn muốn tìm gì?",
"no_results": "Xin lỗi, tôi không tìm thấy thông tin liên quan đến '{query}'. Vui lòng thử lại với từ khóa khác.",
"greeting": "Xin chào! Tôi có thể giúp bạn tra cứu các thông tin liên quan về các văn bản quy định pháp luật về xử lý kỷ luật cán bộ, đảng viên.",
}
class Chatbot:
def __init__(self):
self.intent_classifier = None
self.intent_metrics: Optional[Dict[str, Any]] = None
self._load_classifier()
def _load_classifier(self):
"""Load pretrained classifier nếu có, fallback tự huấn luyện seed data."""
if ARTIFACT_MODEL.exists():
try:
self.intent_classifier = joblib.load(ARTIFACT_MODEL)
if ARTIFACT_METRICS.exists():
self.intent_metrics = json.loads(ARTIFACT_METRICS.read_text(encoding="utf-8"))
return
except Exception as exc:
print(f"Warning: không thể load intent_model.joblib ({exc}). Sẽ huấn luyện tạm thời.")
self.intent_classifier = None
self.intent_metrics = None
self._train_classifier()
def _train_classifier(self):
"""Train intent classification model."""
try:
# Prepare training data
texts = []
labels = []
for intent, examples in INTENT_TRAINING_DATA.items():
for example in examples:
texts.append(self._preprocess_text(example))
labels.append(intent)
if not texts:
return
# Create and train pipeline
self.intent_classifier = Pipeline([
('tfidf', TfidfVectorizer(
analyzer='word',
ngram_range=(1, 2),
min_df=1,
lowercase=True,
token_pattern=r'\b\w+\b'
)),
('clf', MultinomialNB())
])
self.intent_classifier.fit(texts, labels)
except Exception as e:
print(f"Error training classifier: {e}")
self.intent_classifier = None
def _preprocess_text(self, text: str) -> str:
"""Preprocess text for classification - keep Vietnamese characters."""
if not text:
return ""
text = text.lower().strip()
# Only remove punctuation marks, keep all letters (including Vietnamese) and numbers
# Remove: !"#$%&'()*+,-./:;<=>?@[\]^_`{|}~
text = re.sub(r'[!"#$%&\'()*+,\-./:;<=>?@\[\\\]^_`{|}~]', ' ', text)
text = re.sub(r'\s+', ' ', text)
return text.strip()
def _remove_accents(self, text: str) -> str:
"""Remove diacritics for accent-insensitive matching."""
if not text:
return ""
normalized = unicodedata.normalize("NFD", text)
return "".join(ch for ch in normalized if unicodedata.category(ch) != "Mn")
def _keyword_in(self, query_lower: str, query_ascii: str, keyword: str) -> bool:
"""Check keyword presence in either original or accent-free text."""
kw_lower = keyword.lower()
if kw_lower in query_lower:
return True
kw_ascii = self._remove_accents(kw_lower)
return kw_ascii in query_ascii
def classify_intent(self, query: str, context: Optional[Dict[str, Any]] = None) -> Tuple[str, float]:
"""
Classify user intent from query with optional context.
Args:
query: User query string.
context: Optional context dictionary with recent_messages, entities, etc.
Returns:
Tuple of (intent, confidence_score)
"""
# Use context to improve classification if available
if context:
# Check recent intents in context
recent_messages = context.get("recent_messages", [])
if recent_messages:
# Get most recent intent
for msg in reversed(recent_messages):
if msg.get("intent") and msg.get("intent") != "greeting":
recent_intent = msg.get("intent")
# Boost confidence if query is short and recent intent is relevant
if len(query.split()) <= 5:
# Likely a follow-up question
return (recent_intent, 0.85)
model_intent, model_confidence = self._model_based_intent(query)
keyword_intent, keyword_confidence = self._keyword_based_intent(query)
chosen_intent = keyword_intent
confidence = keyword_confidence
# Nếu model tự tin và không mâu thuẫn với keyword, ưu tiên model
if model_intent and model_confidence >= 0.65:
if keyword_intent in {model_intent, "general_query", "greeting"}:
chosen_intent = model_intent
confidence = max(confidence, model_confidence)
# Ensemble: combine model and keyword predictions
if model_intent and keyword_intent:
if model_intent == keyword_intent:
# Both agree - boost confidence
confidence = min(1.0, (model_confidence + keyword_confidence) / 2 + 0.1)
elif model_confidence > 0.7 and keyword_confidence < 0.6:
# Model is more confident - use model
chosen_intent = model_intent
confidence = model_confidence * 0.9 # Slight penalty for disagreement
# Special handling for greeting - only if really simple
if keyword_intent == "greeting":
query_lower = query.lower().strip()
query_ascii = self._remove_accents(query_lower)
query_words = query_lower.split()
# Double-check: if query has fine keywords, it's NOT a greeting
fine_indicators = ["phạt", "mức", "vuot", "vượt", "đèn", "den", "vi phạm", "vi pham"]
if any(self._keyword_in(query_lower, query_ascii, indicator) for indicator in fine_indicators):
# Re-check with fine keywords
for kw in ["mức phạt", "vi phạm", "đèn đỏ", "vượt đèn", "muc phat", "vuot den", "phat", "vuot", "den", "muc"]:
if self._keyword_in(query_lower, query_ascii, kw):
return ("search_fine", 0.9)
# Only return greeting if query is very short (<= 3 words)
if len(query_words) > 3:
# If long query classified as greeting, it's probably wrong - use general
return ("general_query", 0.5)
# Ưu tiên intent pháp luật nếu có nhiều tín hiệu liên quan DB
query_lower_for_boost = query.lower()
if "search_legal" in {model_intent, keyword_intent}:
if any(kw in query_lower_for_boost for kw in LEGAL_KEYWORDS):
chosen_intent = "search_legal"
confidence = max(confidence, model_confidence, keyword_confidence, 0.8)
# Confidence calibration: adjust confidence based on query characteristics
confidence = self._calibrate_confidence(chosen_intent, confidence, query)
return (chosen_intent, confidence)
def _calibrate_confidence(self, intent: str, base_confidence: float, query: str) -> float:
"""
Calibrate confidence score based on query characteristics.
Args:
intent: Classified intent.
base_confidence: Base confidence score.
query: Original query.
Returns:
Calibrated confidence score.
"""
confidence = base_confidence
query_lower = query.lower()
query_words = query.split()
# Boost confidence for longer, more specific queries
if len(query_words) >= 5:
confidence = min(1.0, confidence + 0.05)
# Reduce confidence for very short queries
if len(query_words) <= 2:
confidence = max(0.3, confidence - 0.1)
# Boost confidence if query contains intent-specific keywords
intent_keywords = {
"search_fine": ["phạt", "mức phạt", "vi phạm"],
"search_procedure": ["thủ tục", "hồ sơ", "giấy tờ"],
"search_office": ["địa chỉ", "công an", "đơn vị"],
"search_advisory": ["cảnh báo", "lừa đảo", "scam"],
"search_legal": LEGAL_KEYWORDS,
}
if intent in intent_keywords:
keywords = intent_keywords[intent]
if any(kw in query_lower for kw in keywords):
confidence = min(1.0, confidence + 0.05)
return confidence
def _personalize_query(
self,
query: str,
intent: str,
context: Optional[Dict[str, Any]],
session_id: Optional[str]
) -> str:
"""
Personalize query based on user history and session context.
Args:
query: Original query.
intent: Detected intent.
context: Conversation context.
session_id: Session ID.
Returns:
Personalized query.
"""
if not context or not session_id:
return query
# Get user preferences from context
entities = context.get("entities", {})
intents = context.get("intents", [])
# If user frequently asks about same intent, boost related terms
if intents and len(intents) >= 2:
most_common_intent = max(set(intents), key=intents.count)
if most_common_intent == intent:
# User prefers this intent - query is already personalized
pass
# Add context entities to query if missing
enhanced_parts = [query]
if intent == "search_fine" and "fine_code" in entities:
fine_code = entities["fine_code"]
if fine_code not in query.lower():
enhanced_parts.append(fine_code)
return " ".join(enhanced_parts)
def _model_based_intent(self, query: str) -> Tuple[Optional[str], float]:
"""Phân loại ý định bằng model đã huấn luyện nếu có."""
if not self.intent_classifier:
return (None, 0.0)
try:
predicted_proba = getattr(self.intent_classifier, "predict_proba", None)
if not predicted_proba:
return (None, 0.0)
probs = predicted_proba([query])[0]
classes = self._intent_classes()
if not classes:
return (None, 0.0)
max_idx = int(np.argmax(probs))
return (classes[max_idx], float(probs[max_idx]))
except Exception:
return (None, 0.0)
def _intent_classes(self) -> Optional[List[str]]:
if not self.intent_classifier:
return None
if hasattr(self.intent_classifier, "classes_"):
return list(self.intent_classifier.classes_)
named_steps = getattr(self.intent_classifier, "named_steps", {})
clf = named_steps.get("clf") if isinstance(named_steps, dict) else None
if clf and hasattr(clf, "classes_"):
return list(clf.classes_)
return None
def _keyword_based_intent(self, query: str) -> Tuple[str, float]:
"""Fallback keyword-based intent classification."""
# Use original query (lowercase) to preserve Vietnamese characters
query_lower = query.lower().strip()
query_ascii = self._remove_accents(query_lower)
query_words = query_lower.split()
# Check for keywords - prioritize fine-related queries FIRST
# Check on original query to preserve Vietnamese characters
# Check longer phrases first, then single words
fine_keywords = ["mức phạt", "vi phạm", "đèn đỏ", "nồng độ cồn", "mũ bảo hiểm", "tốc độ", "bằng lái", "vượt đèn", "mức phạt vượt"]
fine_keywords_ascii = [self._remove_accents(kw) for kw in fine_keywords]
fine_single_words = ["phạt", "vượt", "đèn", "mức", "phat", "vuot", "den"]
# Check multi-word keywords first
has_fine_keywords = False
for kw, kw_ascii in zip(fine_keywords, fine_keywords_ascii):
if self._keyword_in(query_lower, query_ascii, kw) or kw_ascii in query_ascii:
return ("search_fine", 0.95) # Very high confidence
# Then check single words - check ALL of them, not just first match
for kw in fine_single_words:
if self._keyword_in(query_lower, query_ascii, kw):
has_fine_keywords = True
# Return immediately if found
return ("search_fine", 0.9)
has_procedure_keywords = any(
self._keyword_in(query_lower, query_ascii, kw) for kw in
["thủ tục", "hồ sơ", "điều kiện", "cư trú", "antt", "pccc", "thu tuc", "ho so", "dieu kien", "cu tru"]
)
if has_procedure_keywords:
return ("search_procedure", 0.8)
# Check advisory keywords first to avoid conflict with "công an" in office keywords
has_advisory_keywords = any(
self._keyword_in(query_lower, query_ascii, kw) for kw in
["cảnh báo", "lừa đảo", "scam", "mạo danh", "thủ đoạn", "cảnh giác", "canh bao", "lua dao", "mao danh", "thu doan", "canh giac"]
)
if has_advisory_keywords:
return ("search_advisory", 0.8)
has_office_keywords = any(
self._keyword_in(query_lower, query_ascii, kw) for kw in
["địa chỉ", "điểm tiếp dân", "công an", "số điện thoại", "giờ làm việc", "dia chi", "diem tiep dan", "cong an", "so dien thoai", "gio lam viec"]
)
if has_office_keywords:
return ("search_office", 0.8)
# Check legal keywords (check BEFORE advisory to avoid "công an" conflict)
has_legal_keywords = any(
self._keyword_in(query_lower, query_ascii, kw) for kw in
["quyết định", "quy định", "thông tư", "nghị quyết", "văn bản pháp luật", "văn bản quy phạm", "điều lệnh",
"kỷ luật đảng viên", "kỷ luật", "xử lý kỷ luật", "hình thức kỷ luật", "mức kỷ luật",
"quyết định 69", "quyết định 264", "qd 69", "qd 264", "thông tư 02", "tt 02",
"quy định kỷ luật", "kỷ luật đảng", "kỷ luật cán bộ", "xử lý vi phạm",
"quyet dinh", "quy dinh", "thong tu", "nghi quyet", "van ban phap luat", "van ban quy pham", "dieu lenh",
"ky luat dang vien", "ky luat", "xu ly ky luat", "hinh thuc ky luat", "muc ky luat",
"quyet dinh 69", "quyet dinh 264", "qd 69", "qd 264", "thong tu 02", "tt 02",
"quy dinh ky luat", "ky luat dang", "ky luat can bo", "xu ly vi pham"]
)
if has_legal_keywords:
return ("search_legal", 0.85)
# Only treat as greeting if it's VERY short (<= 3 words) and ONLY contains greeting words
# AND does NOT contain any other keywords
has_any_keyword = (has_fine_keywords or has_procedure_keywords or
has_office_keywords or has_advisory_keywords or has_legal_keywords)
if (len(query_words) <= 3 and
any(self._keyword_in(query_lower, query_ascii, kw) for kw in ["xin chào", "chào", "hello", "hi", "xin chao", "chao"]) and
not has_any_keyword):
return ("greeting", 0.9)
return ("general_query", 0.5)
def extract_keywords(self, query: str) -> List[str]:
"""Extract keywords from query for search."""
# Remove common stopwords
stopwords = {"là", "gì", "bao nhiêu", "như thế nào", "ở đâu", "của", "và", "hoặc", "tôi", "bạn"}
words = re.findall(r'\b\w+\b', query.lower())
keywords = [w for w in words if w not in stopwords and len(w) > 2]
return keywords
def search_by_intent(self, intent: str, query: str, limit: int = 5) -> Dict[str, Any]:
"""Search based on classified intent."""
# Use original query for better matching, especially for Vietnamese text
keywords = query.strip()
# Also try with extracted keywords as fallback
extracted = " ".join(self.extract_keywords(query))
if extracted and len(extracted) > 2:
keywords = f"{keywords} {extracted}"
results = []
if intent == "search_fine":
qs = Fine.objects.all()
text_fields = ["name", "code", "article", "decree", "remedial"]
search_results = search_with_ml(qs, keywords, text_fields, top_k=limit, min_score=0.1)
results = [{"type": "fine", "data": {
"id": f.id,
"name": f.name,
"code": f.code,
"min_fine": float(f.min_fine) if f.min_fine else None,
"max_fine": float(f.max_fine) if f.max_fine else None,
"fine_amount_formatted": format_fine_amount(
float(f.min_fine) if f.min_fine else None,
float(f.max_fine) if f.max_fine else None
),
"article": f.article,
"decree": f.decree,
}} for f in search_results]
elif intent == "search_procedure":
qs = Procedure.objects.all()
text_fields = ["title", "domain", "conditions", "dossier"]
search_results = search_with_ml(qs, keywords, text_fields, top_k=limit, min_score=0.1)
results = [{"type": "procedure", "data": {
"id": p.id,
"title": p.title,
"domain": p.domain,
"level": p.level,
}} for p in search_results]
elif intent == "search_office":
qs = Office.objects.all()
text_fields = ["unit_name", "address", "district", "service_scope"]
search_results = search_with_ml(qs, keywords, text_fields, top_k=limit, min_score=0.1)
results = [{"type": "office", "data": {
"id": o.id,
"unit_name": o.unit_name,
"address": o.address,
"district": o.district,
"phone": o.phone,
"working_hours": o.working_hours,
}} for o in search_results]
elif intent == "search_advisory":
qs = Advisory.objects.all()
text_fields = ["title", "summary"]
search_results = search_with_ml(qs, keywords, text_fields, top_k=limit, min_score=0.1)
results = [{"type": "advisory", "data": {
"id": a.id,
"title": a.title,
"summary": a.summary,
}} for a in search_results]
return {
"intent": intent,
"query": query,
"keywords": keywords,
"results": results,
"count": len(results)
}
def _serialize_document(self, doc: Any, content_type: str) -> Dict[str, Any]:
"""Convert Django model instance to JSON-serializable dict."""
base = {"id": getattr(doc, "id", None)}
content_type = (content_type or "").lower()
def _to_iso(value):
if value is None:
return None
if hasattr(value, "isoformat"):
return value.isoformat()
return value
if content_type == "procedure":
base.update({
"title": getattr(doc, "title", ""),
"domain": getattr(doc, "domain", ""),
"level": getattr(doc, "level", ""),
"conditions": getattr(doc, "conditions", ""),
"dossier": getattr(doc, "dossier", ""),
"fee": getattr(doc, "fee", ""),
"duration": getattr(doc, "duration", ""),
"authority": getattr(doc, "authority", ""),
"source_url": getattr(doc, "source_url", ""),
})
elif content_type == "fine":
min_fine = float(doc.min_fine) if getattr(doc, "min_fine", None) is not None else None
max_fine = float(doc.max_fine) if getattr(doc, "max_fine", None) is not None else None
base.update({
"name": getattr(doc, "name", ""),
"code": getattr(doc, "code", ""),
"min_fine": min_fine,
"max_fine": max_fine,
"fine_amount_formatted": format_fine_amount(min_fine, max_fine),
"article": getattr(doc, "article", ""),
"decree": getattr(doc, "decree", ""),
})
elif content_type == "office":
base.update({
"unit_name": getattr(doc, "unit_name", ""),
"address": getattr(doc, "address", ""),
"district": getattr(doc, "district", ""),
"phone": getattr(doc, "phone", ""),
"working_hours": getattr(doc, "working_hours", ""),
})
elif content_type == "advisory":
base.update({
"title": getattr(doc, "title", ""),
"summary": getattr(doc, "summary", ""),
"source_url": getattr(doc, "source_url", ""),
"published_at": _to_iso(getattr(doc, "published_at", None)),
})
else:
# Fallback: include common attributes but skip non-serializable ones
safe_attrs = [
"title", "summary", "description", "domain", "level", "conditions",
"dossier", "fee", "duration", "authority", "unit_name", "address",
"district", "phone", "working_hours", "source_url", "published_at"
]
for attr in safe_attrs:
if hasattr(doc, attr):
value = getattr(doc, attr)
if attr == "published_at":
base[attr] = _to_iso(value)
elif isinstance(value, (str, int, float, type(None))):
base[attr] = value
return base
def generate_response(self, query: str, session_id: Optional[str] = None) -> Dict[str, Any]:
"""
Generate chatbot response for user query with context awareness.
Args:
query: User query string.
session_id: Optional session ID for context management.
Returns:
Dict with message, intent, results, and session_id.
"""
query = query.strip()
original_query = query
# Get context if session_id provided
context_messages = []
context_dict = None
if session_id:
try:
from hue_portal.chatbot.context_manager import ConversationContext
from hue_portal.chatbot.entity_extraction import resolve_pronouns, extract_all_entities
# Get recent messages
recent_messages = ConversationContext.get_recent_messages(session_id, limit=10)
context_messages = [
{
"role": msg.role,
"content": msg.content,
"intent": msg.intent,
"entities": msg.entities
}
for msg in recent_messages
]
# Build context dictionary for intent classification
context_dict = ConversationContext.get_context_summary(session_id, max_messages=5)
# Resolve pronouns in query
if context_messages:
query = resolve_pronouns(query, context_messages)
if query != original_query:
print(f"Query enhanced with context: '{original_query}' -> '{query}'")
except Exception as e:
print(f"Error loading context: {e}")
# Classify intent FIRST (use enhanced query and context)
intent, confidence = self.classify_intent(query, context=context_dict)
# Personalize response based on context and user history
personalized_query = self._personalize_query(query, intent, context_dict, session_id)
if personalized_query != query:
query = personalized_query
# Only handle greetings if it's REALLY a simple greeting (very short, no other keywords)
query_lower = query.lower().strip()
query_words = query_lower.split()
# Check if it contains keywords that indicate it's NOT a greeting
has_fine_keywords = any(kw in query_lower for kw in ["phạt", "mức phạt", "vi phạm", "đèn đỏ", "nồng độ cồn", "mũ bảo hiểm", "tốc độ", "vượt"])
has_procedure_keywords = any(kw in query_lower for kw in ["thủ tục", "hồ sơ", "điều kiện", "cư trú", "antt", "pccc"])
# Check advisory keywords first to avoid conflict with "công an" in office keywords
has_advisory_keywords = any(kw in query_lower for kw in ["cảnh báo", "lừa đảo", "scam", "mạo danh", "thủ đoạn", "cảnh giác"])
has_office_keywords = any(kw in query_lower for kw in ["địa chỉ", "công an", "số điện thoại", "giờ làm việc"])
has_legal_keywords = any(kw in query_lower for kw in ["quyết định", "quy định", "thông tư", "kỷ luật đảng viên", "kỷ luật", "qd 69", "qd 264", "thông tư 02", "điều lệnh", "văn bản pháp luật"])
# Only treat as greeting if it's very short AND has no other keywords AND classified as greeting
is_simple_greeting = (len(query_words) <= 3 and
any(greeting in query_lower for greeting in ["xin chào", "chào", "hello", "hi"]) and
not (has_fine_keywords or has_procedure_keywords or has_office_keywords or has_advisory_keywords or has_legal_keywords))
if is_simple_greeting and intent == "greeting":
response = {
"message": RESPONSE_TEMPLATES["greeting"],
"intent": "greeting",
"results": [],
"count": 0,
"session_id": session_id
}
# Save conversation if session_id provided
if session_id:
try:
from hue_portal.chatbot.context_manager import ConversationContext
from hue_portal.chatbot.entity_extraction import extract_all_entities
# Save user message
entities = extract_all_entities(original_query)
ConversationContext.add_message(
session_id=session_id,
role="user",
content=original_query,
intent=intent,
entities=entities
)
# Save bot response
ConversationContext.add_message(
session_id=session_id,
role="bot",
content=RESPONSE_TEMPLATES["greeting"],
intent=intent
)
except Exception as e:
print(f"Error saving conversation: {e}")
return response
# Try RAG pipeline first (if embeddings available)
use_rag = True
try:
from hue_portal.core.rag import rag_pipeline
# Build context list for RAG
rag_context = None
if context_messages:
rag_context = context_messages
rag_result = rag_pipeline(query, intent, top_k=5, min_confidence=confidence, context=rag_context, use_llm=True)
# Use RAG answer if available (even with count=0 for general conversation)
if rag_result.get("answer") and (rag_result["count"] > 0 or rag_result.get("answer", "").strip()):
# Use RAG-generated answer
documents = rag_result["documents"][:5]
results = [
{
"type": rag_result["content_type"],
"data": self._serialize_document(doc, rag_result["content_type"])
} for doc in documents
]
# Add best_match flag and relevance_scores
best_match_index = 0 if documents else None
relevance_scores = []
for i, doc in enumerate(documents):
score = getattr(doc, "_hybrid_score", getattr(doc, "_ml_score", 0.0))
relevance_scores.append({
"index": i,
"score": float(score) if score else 0.0,
"is_best_match": i == 0
})
response = {
"message": rag_result["answer"],
"intent": intent,
"confidence": rag_result["confidence"],
"results": results,
"count": rag_result["count"],
"best_match": best_match_index,
"relevance_scores": relevance_scores,
"session_id": session_id
}
# Save conversation if session_id provided
if session_id:
try:
from hue_portal.chatbot.context_manager import ConversationContext
from hue_portal.chatbot.entity_extraction import extract_all_entities
# Save user message
entities = extract_all_entities(original_query)
ConversationContext.add_message(
session_id=session_id,
role="user",
content=original_query,
intent=intent,
entities=entities
)
# Save bot response
ConversationContext.add_message(
session_id=session_id,
role="bot",
content=rag_result["answer"],
intent=intent
)
except Exception as e:
print(f"Error saving conversation: {e}")
return response
except Exception as e:
# Fallback to original search if RAG fails
print(f"RAG pipeline not available, using original search: {e}")
use_rag = False
# Search based on intent (original method)
search_result = self.search_by_intent(intent, query, limit=5)
# Generate response message
if search_result["count"] > 0:
template = RESPONSE_TEMPLATES.get(intent, RESPONSE_TEMPLATES["general_query"])
message = template.format(
count=search_result["count"],
query=query
)
else:
message = RESPONSE_TEMPLATES["no_results"].format(query=query)
# Add best_match flag and relevance_scores for search results
best_match_index = 0 if search_result["count"] > 0 else None
relevance_scores = []
for i, result in enumerate(search_result["results"][:5]):
# Try to get score from result data if available
score = 0.0
if isinstance(result, dict) and "data" in result:
# Score might be in the data or we can infer from position
score = 1.0 - (i * 0.1) # Decreasing score for lower positions
relevance_scores.append({
"index": i,
"score": score,
"is_best_match": i == 0
})
response = {
"message": message,
"intent": intent,
"confidence": confidence,
"results": search_result["results"],
"count": search_result["count"],
"best_match": best_match_index,
"relevance_scores": relevance_scores,
"session_id": session_id
}
# Save conversation if session_id provided
if session_id:
try:
from hue_portal.chatbot.context_manager import ConversationContext
from hue_portal.chatbot.entity_extraction import extract_all_entities
# Save user message
entities = extract_all_entities(original_query)
ConversationContext.add_message(
session_id=session_id,
role="user",
content=original_query,
intent=intent,
entities=entities
)
# Save bot response
ConversationContext.add_message(
session_id=session_id,
role="bot",
content=message,
intent=intent
)
except Exception as e:
print(f"Error saving conversation: {e}")
return response
# Global chatbot instance
_chatbot_instance = None
def get_chatbot() -> Chatbot:
"""Get or create chatbot instance."""
global _chatbot_instance
if _chatbot_instance is None:
_chatbot_instance = Chatbot()
return _chatbot_instance |