Spaces:
Sleeping
Sleeping
File size: 6,401 Bytes
980fef7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 |
import argparse
import json
import os
from pathlib import Path
import sys
import time
from datetime import datetime
import joblib
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import accuracy_score, classification_report, confusion_matrix
from sklearn.model_selection import train_test_split
from sklearn.naive_bayes import MultinomialNB
from sklearn.pipeline import Pipeline
ROOT_DIR = Path(__file__).resolve().parents[2]
if str(ROOT_DIR) not in sys.path:
sys.path.insert(0, str(ROOT_DIR))
BASE_DIR = Path(__file__).resolve().parent
DEFAULT_DATASET = BASE_DIR / "intent_dataset.json"
GENERATED_QA_DIR = BASE_DIR / "generated_qa"
ARTIFACT_DIR = BASE_DIR / "artifacts"
LOG_DIR = ROOT_DIR / "logs" / "intent"
ARTIFACT_DIR.mkdir(parents=True, exist_ok=True)
LOG_DIR.mkdir(parents=True, exist_ok=True)
def load_dataset(path: Path):
payload = json.loads(path.read_text(encoding="utf-8"))
texts = []
labels = []
for intent in payload.get("intents", []):
name = intent["name"]
for example in intent.get("examples", []):
texts.append(example)
labels.append(name)
return texts, labels, payload
def load_generated_qa(directory: Path):
"""
Load generated QA questions as additional intent training samples.
Each JSON file is expected to contain a list of objects compatible
with `QAItem` from `generated_qa`, at minimum having:
- question: str
- intent: str
"""
texts: list[str] = []
labels: list[str] = []
if not directory.exists():
return texts, labels
for path in sorted(directory.glob("*.json")):
try:
payload = json.loads(path.read_text(encoding="utf-8"))
except Exception:
# Skip malformed files but continue loading others
continue
if not isinstance(payload, list):
continue
for item in payload:
if not isinstance(item, dict):
continue
question = str(item.get("question") or "").strip()
intent = str(item.get("intent") or "").strip() or "search_legal"
if not question:
continue
texts.append(question)
labels.append(intent)
return texts, labels
def load_combined_dataset(path: Path, generated_dir: Path):
"""
Load seed intent dataset and merge with generated QA questions.
"""
texts, labels, meta = load_dataset(path)
gen_texts, gen_labels = load_generated_qa(generated_dir)
texts.extend(gen_texts)
labels.extend(gen_labels)
return texts, labels, meta
def build_pipelines():
vectorizer = TfidfVectorizer(
analyzer="word",
ngram_range=(1, 2),
lowercase=True,
token_pattern=r"\b\w+\b",
)
nb_pipeline = Pipeline([
("tfidf", vectorizer),
("clf", MultinomialNB()),
])
logreg_pipeline = Pipeline([
("tfidf", vectorizer),
("clf", LogisticRegression(max_iter=1000, solver="lbfgs")),
])
return {
"multinomial_nb": nb_pipeline,
"logistic_regression": logreg_pipeline,
}
def train(dataset_path: Path, test_size: float = 0.2, random_state: int = 42):
texts, labels, meta = load_combined_dataset(dataset_path, GENERATED_QA_DIR)
if not texts:
raise ValueError("Dataset rỗng, không thể huấn luyện")
X_train, X_test, y_train, y_test = train_test_split(
texts, labels, test_size=test_size, random_state=random_state, stratify=labels
)
pipelines = build_pipelines()
best_model = None
best_metrics = None
for name, pipeline in pipelines.items():
start = time.perf_counter()
pipeline.fit(X_train, y_train)
train_duration = time.perf_counter() - start
y_pred = pipeline.predict(X_test)
acc = accuracy_score(y_test, y_pred)
report = classification_report(y_test, y_pred, output_dict=True)
cm = confusion_matrix(y_test, y_pred, labels=sorted(set(labels)))
metrics = {
"model": name,
"accuracy": acc,
"train_duration_sec": train_duration,
"classification_report": report,
"confusion_matrix": cm.tolist(),
"labels": sorted(set(labels)),
"dataset_version": meta.get("version"),
"timestamp": datetime.utcnow().isoformat() + "Z",
"test_size": test_size,
"samples": len(texts),
}
if best_model is None or acc > best_metrics["accuracy"]:
best_model = pipeline
best_metrics = metrics
assert best_model is not None
model_path = ARTIFACT_DIR / "intent_model.joblib"
metrics_path = ARTIFACT_DIR / "metrics.json"
joblib.dump(best_model, model_path)
metrics_path.write_text(json.dumps(best_metrics, ensure_ascii=False, indent=2), encoding="utf-8")
log_entry = {
"event": "train_intent",
"model": best_metrics["model"],
"accuracy": best_metrics["accuracy"],
"timestamp": best_metrics["timestamp"],
"samples": best_metrics["samples"],
"dataset_version": best_metrics["dataset_version"],
"artifact": str(model_path.relative_to(ROOT_DIR)),
}
log_file = LOG_DIR / "train.log"
with log_file.open("a", encoding="utf-8") as fh:
fh.write(json.dumps(log_entry, ensure_ascii=False) + "\n")
return model_path, metrics_path, best_metrics
def parse_args():
parser = argparse.ArgumentParser(description="Huấn luyện model intent cho chatbot")
parser.add_argument("--dataset", type=Path, default=DEFAULT_DATASET, help="Đường dẫn tới intent_dataset.json")
parser.add_argument("--test-size", type=float, default=0.2, help="Tỉ lệ dữ liệu test")
parser.add_argument("--seed", type=int, default=42, help="Giá trị random seed")
return parser.parse_args()
def main():
args = parse_args()
model_path, metrics_path, metrics = train(args.dataset, test_size=args.test_size, random_state=args.seed)
print("Huấn luyện hoàn tất:")
print(f" Model: {metrics['model']}")
print(f" Accuracy: {metrics['accuracy']:.4f}")
print(f" Model artifact: {model_path}")
print(f" Metrics: {metrics_path}")
if __name__ == "__main__":
main()
|