Spaces:
Sleeping
Sleeping
File size: 8,960 Bytes
e1ecd91 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 |
"""
Utilities to ingest uploaded legal documents into persistent storage.
"""
from __future__ import annotations
import hashlib
from dataclasses import dataclass
from datetime import datetime, date
from io import BytesIO
from typing import BinaryIO, Dict, Optional
from pathlib import Path
import re
from django.conf import settings
from django.core.files.base import ContentFile
from django.db import transaction
from django.utils import timezone
from hue_portal.core.models import (
LegalDocument,
LegalSection,
LegalDocumentImage,
IngestionJob,
)
from hue_portal.core.etl.legal_document_loader import load_legal_document
from hue_portal.core.tasks import process_ingestion_job
@dataclass
class LegalIngestionResult:
document: LegalDocument
created: bool
sections_count: int
images_count: int
def _parse_date(value: Optional[str | date]) -> Optional[date]:
if isinstance(value, date):
return value
if not value:
return None
for fmt in ("%Y-%m-%d", "%d/%m/%Y"):
try:
return datetime.strptime(value, fmt).date()
except ValueError:
continue
return None
def _sha256(data: bytes) -> str:
digest = hashlib.sha256()
digest.update(data)
return digest.hexdigest()
def _normalize_text(text: str) -> str:
cleaned = re.sub(r"\s+", "", text or "")
return cleaned.lower()
DOC_TYPE_KEYWORDS = {
"decision": ["quyết định"],
"circular": ["thông tư"],
"guideline": ["hướng dẫn"],
"plan": ["kế hoạch"],
}
def _auto_fill_metadata(
*, text: str, title: str, issued_by: str, issued_at: Optional[date], doc_type: str
) -> tuple[str, str, Optional[date], str]:
head = (text or "")[:2000]
if not issued_by:
match = re.search(r"(BỘ\s+[A-ZÂĂÊÔƠƯ\s]+|ỦY BAN\s+NHÂN DÂN\s+[^\n]+)", head, re.IGNORECASE)
if match:
issued_by = match.group(0).strip()
if not issued_at:
match = re.search(
r"(\d{1,2})[\/\-](\d{1,2})[\/\-](\d{4})", head,
)
if match:
day, month, year = match.groups()
issued_at = _parse_date(f"{year}-{int(month):02d}-{int(day):02d}")
else:
match = re.search(
r"ngày\s+(\d{1,2})\s+tháng\s+(\d{1,2})\s+năm\s+(\d{4})",
head,
re.IGNORECASE,
)
if match:
day, month, year = match.groups()
issued_at = _parse_date(f"{year}-{int(month):02d}-{int(day):02d}")
if doc_type == "other":
lower = head.lower()
for dtype, keywords in DOC_TYPE_KEYWORDS.items():
if any(keyword in lower for keyword in keywords):
doc_type = dtype
break
if not title or title == (DOC_TYPE_KEYWORDS.get(doc_type, [title])[0] if doc_type != "other" else ""):
match = re.search(r"(QUYẾT ĐỊNH|THÔNG TƯ|HƯỚNG DẪN|KẾ HOẠCH)[^\n]+", head, re.IGNORECASE)
if match:
title = match.group(0).strip().title()
return title, issued_by, issued_at, doc_type
def ingest_uploaded_document(
*,
file_obj: BinaryIO,
filename: str,
metadata: Dict,
) -> LegalIngestionResult:
"""
Ingest uploaded PDF/DOCX file, storing raw file, sections, and extracted images.
Args:
file_obj: Binary file-like object positioned at start.
filename: Original filename.
metadata: dict containing code, title, doc_type, summary, issued_by, issued_at, source_url, extra_metadata.
"""
code = metadata.get("code", "").strip()
if not code:
raise ValueError("Document code is required.")
title = metadata.get("title") or code
doc_type = metadata.get("doc_type", "other")
issued_at = _parse_date(metadata.get("issued_at"))
summary = metadata.get("summary", "")
issued_by = metadata.get("issued_by", "")
source_url = metadata.get("source_url", "")
extra_metadata = metadata.get("metadata") or {}
file_bytes = file_obj.read()
if hasattr(file_obj, "seek"):
file_obj.seek(0)
checksum = _sha256(file_bytes)
mime_type = metadata.get("mime_type") or getattr(file_obj, "content_type", "")
size = len(file_bytes)
extracted = load_legal_document(BytesIO(file_bytes), filename=filename)
title, issued_by, issued_at, doc_type = _auto_fill_metadata(
text=extracted.text, title=title, issued_by=issued_by, issued_at=issued_at, doc_type=doc_type
)
normalized_text = _normalize_text(extracted.text)
content_checksum = _sha256(normalized_text.encode("utf-8"))
duplicate = (
LegalDocument.objects.filter(content_checksum=content_checksum)
.exclude(code=code)
.first()
)
if duplicate:
raise ValueError(f"Nội dung trùng với văn bản hiện có: {duplicate.code}")
with transaction.atomic():
doc, created = LegalDocument.objects.get_or_create(
code=code,
defaults={
"title": title,
"doc_type": doc_type,
"summary": summary,
"issued_by": issued_by,
"issued_at": issued_at,
"source_url": source_url,
"metadata": extra_metadata,
},
)
# Update metadata if document already existed (keep latest info)
doc.title = title
doc.doc_type = doc_type
doc.summary = summary
doc.issued_by = issued_by
doc.issued_at = issued_at
doc.source_url = source_url
doc.metadata = extra_metadata
doc.page_count = extracted.page_count
doc.raw_text = extracted.text
doc.raw_text_ocr = extracted.ocr_text or ""
doc.file_checksum = checksum
doc.content_checksum = content_checksum
doc.file_size = size
doc.mime_type = mime_type
doc.original_filename = filename
doc.updated_at = timezone.now()
# Save binary file
content = ContentFile(file_bytes)
storage_name = f"{code}/{filename}"
doc.uploaded_file.save(storage_name, content, save=False)
doc.source_file = doc.uploaded_file.name
doc.save()
# Replace sections
doc.sections.all().delete()
sections = []
for idx, section in enumerate(extracted.sections, start=1):
sections.append(
LegalSection(
document=doc,
section_code=section.code,
section_title=section.title,
level=section.level,
order=idx,
content=section.content,
excerpt=section.content[:400],
page_start=section.page_start,
page_end=section.page_end,
is_ocr=section.is_ocr,
metadata=section.metadata or {},
)
)
LegalSection.objects.bulk_create(sections, batch_size=200)
# Replace images
doc.images.all().delete()
images = []
for idx, image in enumerate(extracted.images, start=1):
image_content = ContentFile(image.data)
image_name = f"{code}/img_{idx}.{image.extension}"
img_instance = LegalDocumentImage(
document=doc,
page_number=image.page_number,
description=image.description,
width=image.width,
height=image.height,
checksum=_sha256(image.data),
)
img_instance.image.save(image_name, image_content, save=False)
images.append(img_instance)
LegalDocumentImage.objects.bulk_create(images, batch_size=100)
return LegalIngestionResult(
document=doc,
created=created,
sections_count=len(sections),
images_count=len(images),
)
def enqueue_ingestion_job(*, file_obj, filename: str, metadata: Dict) -> IngestionJob:
"""
Persist uploaded file to a temporary job folder and enqueue Celery processing.
"""
job = IngestionJob.objects.create(
code=metadata.get("code", ""),
filename=filename,
metadata=metadata,
status=IngestionJob.STATUS_PENDING,
)
temp_dir = Path(settings.MEDIA_ROOT) / "ingestion_jobs" / str(job.id)
temp_dir.mkdir(parents=True, exist_ok=True)
temp_path = temp_dir / filename
if hasattr(file_obj, "seek"):
file_obj.seek(0)
if hasattr(file_obj, "chunks"):
with temp_path.open("wb") as dest:
for chunk in file_obj.chunks():
dest.write(chunk)
else:
data = file_obj.read()
with temp_path.open("wb") as dest:
dest.write(data)
job.storage_path = str(temp_path)
job.save(update_fields=["storage_path"])
process_ingestion_job.delay(str(job.id))
return job
|