File size: 10,957 Bytes
9e39729 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 |
import json
from django.conf import settings
from django.db.models.functions import Lower
from django.db.models import Q
from django.http import FileResponse, Http404
from django.shortcuts import get_object_or_404
from pathlib import Path
from rest_framework.decorators import api_view, parser_classes
from rest_framework.parsers import MultiPartParser, FormParser
from rest_framework.response import Response
from .models import Procedure, Fine, Office, Advisory, LegalSection, LegalDocument, Synonym, IngestionJob
from .serializers import (
ProcedureSerializer,
FineSerializer,
OfficeSerializer,
AdvisorySerializer,
LegalSectionSerializer,
LegalDocumentSerializer,
IngestionJobSerializer,
)
from .services import enqueue_ingestion_job
from .search_ml import search_with_ml
# Chatbot moved to hue_portal.chatbot app
# Keeping import for backward compatibility
try:
from hue_portal.chatbot.chatbot import get_chatbot
except ImportError:
from .chatbot import get_chatbot
def normalize_query(q: str) -> str:
return (q or "").strip()
@api_view(["GET"])
def search(request):
"""Unified search endpoint - searches across all models."""
q = normalize_query(request.GET.get("q", ""))
type_ = request.GET.get("type") # Optional: filter by type
if not q:
return Response({"error": "q parameter is required"}, status=400)
results = []
# Search Procedures
if not type_ or type_ == "procedure":
proc_qs = Procedure.objects.all()
proc_text_fields = ["title", "domain", "conditions", "dossier"]
proc_results = search_with_ml(proc_qs, q, proc_text_fields, top_k=10, min_score=0.1)
for obj in proc_results:
results.append({
"type": "procedure",
"data": ProcedureSerializer(obj).data,
"relevance": getattr(obj, '_ml_score', 0.5)
})
# Search Fines
if not type_ or type_ == "fine":
fine_qs = Fine.objects.all()
fine_text_fields = ["name", "code", "article", "decree", "remedial"]
fine_results = search_with_ml(fine_qs, q, fine_text_fields, top_k=10, min_score=0.1)
for obj in fine_results:
results.append({
"type": "fine",
"data": FineSerializer(obj).data,
"relevance": getattr(obj, '_ml_score', 0.5)
})
# Search Offices
if not type_ or type_ == "office":
office_qs = Office.objects.all()
office_text_fields = ["unit_name", "address", "district", "service_scope"]
office_results = search_with_ml(office_qs, q, office_text_fields, top_k=10, min_score=0.1)
for obj in office_results:
results.append({
"type": "office",
"data": OfficeSerializer(obj).data,
"relevance": getattr(obj, '_ml_score', 0.5)
})
# Search Advisories
if not type_ or type_ == "advisory":
adv_qs = Advisory.objects.all()
adv_text_fields = ["title", "summary"]
adv_results = search_with_ml(adv_qs, q, adv_text_fields, top_k=10, min_score=0.1)
for obj in adv_results:
results.append({
"type": "advisory",
"data": AdvisorySerializer(obj).data,
"relevance": getattr(obj, '_ml_score', 0.5)
})
if not type_ or type_ == "legal":
legal_qs = LegalSection.objects.select_related("document").all()
legal_text_fields = ["section_title", "section_code", "content"]
legal_results = search_with_ml(legal_qs, q, legal_text_fields, top_k=10, min_score=0.1)
for obj in legal_results:
results.append({
"type": "legal",
"data": LegalSectionSerializer(obj, context={"request": request}).data,
"relevance": getattr(obj, '_ml_score', 0.5)
})
# Sort by relevance score
results.sort(key=lambda x: x["relevance"], reverse=True)
return Response({
"query": q,
"count": len(results),
"results": results[:50] # Limit total results
})
@api_view(["GET"])
def procedures_list(request):
q = normalize_query(request.GET.get("q", ""))
domain = request.GET.get("domain")
level = request.GET.get("level")
qs = Procedure.objects.all()
if domain: qs = qs.filter(domain__iexact=domain)
if level: qs = qs.filter(level__iexact=level)
if q:
# Use ML-based search for better results
text_fields = ["title", "domain", "conditions", "dossier"]
qs = search_with_ml(qs, q, text_fields, top_k=100, min_score=0.1)
return Response(ProcedureSerializer(qs[:100], many=True).data)
@api_view(["GET"])
def procedures_detail(request, pk:int):
try:
obj = Procedure.objects.get(pk=pk)
except Procedure.DoesNotExist:
return Response(status=404)
return Response(ProcedureSerializer(obj).data)
@api_view(["GET"])
def fines_list(request):
q = normalize_query(request.GET.get("q", ""))
code = request.GET.get("code")
qs = Fine.objects.all()
if code: qs = qs.filter(code__iexact=code)
if q:
# Use ML-based search for better results
text_fields = ["name", "code", "article", "decree", "remedial"]
qs = search_with_ml(qs, q, text_fields, top_k=100, min_score=0.1)
return Response(FineSerializer(qs[:100], many=True).data)
@api_view(["GET"])
def fines_detail(request, pk:int):
try:
obj = Fine.objects.get(pk=pk)
except Fine.DoesNotExist:
return Response(status=404)
return Response(FineSerializer(obj).data)
@api_view(["GET"])
def offices_list(request):
q = normalize_query(request.GET.get("q", ""))
district = request.GET.get("district")
qs = Office.objects.all()
if district: qs = qs.filter(district__iexact=district)
if q:
# Use ML-based search for better results
text_fields = ["unit_name", "address", "district", "service_scope"]
qs = search_with_ml(qs, q, text_fields, top_k=100, min_score=0.1)
return Response(OfficeSerializer(qs[:100], many=True).data)
@api_view(["GET"])
def offices_detail(request, pk:int):
try:
obj = Office.objects.get(pk=pk)
except Office.DoesNotExist:
return Response(status=404)
return Response(OfficeSerializer(obj).data)
@api_view(["GET"])
def advisories_list(request):
q = normalize_query(request.GET.get("q", ""))
qs = Advisory.objects.all().order_by("-published_at")
if q:
# Use ML-based search for better results
text_fields = ["title", "summary"]
qs = search_with_ml(qs, q, text_fields, top_k=100, min_score=0.1)
return Response(AdvisorySerializer(qs[:100], many=True).data)
@api_view(["GET"])
def advisories_detail(request, pk:int):
try:
obj = Advisory.objects.get(pk=pk)
except Advisory.DoesNotExist:
return Response(status=404)
return Response(AdvisorySerializer(obj).data)
@api_view(["GET"])
def legal_sections_list(request):
q = normalize_query(request.GET.get("q", ""))
document_code = request.GET.get("document_code")
section_code = request.GET.get("section_code")
qs = LegalSection.objects.select_related("document").all()
if document_code:
qs = qs.filter(document__code__iexact=document_code)
if section_code:
qs = qs.filter(section_code__icontains=section_code)
if q:
text_fields = ["section_title", "section_code", "content"]
qs = search_with_ml(qs, q, text_fields, top_k=100, min_score=0.1)
return Response(LegalSectionSerializer(qs[:100], many=True, context={"request": request}).data)
@api_view(["GET"])
def legal_sections_detail(request, pk:int):
try:
obj = LegalSection.objects.select_related("document").get(pk=pk)
except LegalSection.DoesNotExist:
return Response(status=404)
return Response(LegalSectionSerializer(obj, context={"request": request}).data)
@api_view(["GET"])
def legal_document_download(request, pk:int):
try:
doc = LegalDocument.objects.get(pk=pk)
except LegalDocument.DoesNotExist:
raise Http404("Document not found")
if not doc.source_file:
raise Http404("Document missing source file")
file_path = Path(doc.source_file)
if not file_path.exists():
raise Http404("Source file not found on server")
response = FileResponse(open(file_path, "rb"), as_attachment=True, filename=file_path.name)
return response
def _has_upload_access(request):
if getattr(request, "user", None) and request.user.is_authenticated:
return True
expected = getattr(settings, "LEGAL_UPLOAD_TOKEN", "")
header_token = request.headers.get("X-Upload-Token")
return bool(expected and header_token and header_token == expected)
@api_view(["POST"])
@parser_classes([MultiPartParser, FormParser])
def legal_document_upload(request):
if not _has_upload_access(request):
return Response({"error": "unauthorized"}, status=403)
upload = request.FILES.get("file")
if not upload:
return Response({"error": "file is required"}, status=400)
code = (request.data.get("code") or "").strip()
if not code:
return Response({"error": "code is required"}, status=400)
metadata = {
"code": code,
"title": request.data.get("title") or code,
"doc_type": request.data.get("doc_type", "other"),
"summary": request.data.get("summary", ""),
"issued_by": request.data.get("issued_by", ""),
"issued_at": request.data.get("issued_at"),
"source_url": request.data.get("source_url", ""),
"mime_type": request.data.get("mime_type") or getattr(upload, "content_type", ""),
"metadata": {},
}
extra_meta = request.data.get("metadata")
if extra_meta:
try:
metadata["metadata"] = json.loads(extra_meta) if isinstance(extra_meta, str) else extra_meta
except Exception:
return Response({"error": "metadata must be valid JSON"}, status=400)
try:
job = enqueue_ingestion_job(
file_obj=upload,
filename=upload.name,
metadata=metadata,
)
except ValueError as exc:
return Response({"error": str(exc)}, status=400)
except Exception as exc:
return Response({"error": str(exc)}, status=500)
serialized = IngestionJobSerializer(job, context={"request": request}).data
return Response(serialized, status=202)
@api_view(["GET"])
def legal_ingestion_job_detail(request, job_id):
job = get_object_or_404(IngestionJob, id=job_id)
return Response(IngestionJobSerializer(job, context={"request": request}).data)
@api_view(["GET"])
def legal_ingestion_job_list(request):
code = request.GET.get("code")
qs = IngestionJob.objects.all()
if code:
qs = qs.filter(code=code)
qs = qs.order_by("-created_at")[:20]
serializer = IngestionJobSerializer(qs, many=True, context={"request": request})
return Response(serializer.data)
@api_view(["POST"])
def chat(request):
"""Chatbot endpoint for natural language queries."""
message = request.data.get("message", "").strip()
if not message:
return Response({"error": "message is required"}, status=400)
try:
chatbot = get_chatbot()
response = chatbot.generate_response(message)
return Response(response)
except Exception as e:
return Response({
"message": "Xin lỗi, có lỗi xảy ra. Vui lòng thử lại.",
"intent": "error",
"error": str(e),
"results": [],
"count": 0
}, status=500)
|