File size: 10,957 Bytes
9e39729
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
import json
from django.conf import settings
from django.db.models.functions import Lower
from django.db.models import Q
from django.http import FileResponse, Http404
from django.shortcuts import get_object_or_404
from pathlib import Path
from rest_framework.decorators import api_view, parser_classes
from rest_framework.parsers import MultiPartParser, FormParser
from rest_framework.response import Response
from .models import Procedure, Fine, Office, Advisory, LegalSection, LegalDocument, Synonym, IngestionJob
from .serializers import (
    ProcedureSerializer,
    FineSerializer,
    OfficeSerializer,
    AdvisorySerializer,
    LegalSectionSerializer,
    LegalDocumentSerializer,
    IngestionJobSerializer,
)
from .services import enqueue_ingestion_job
from .search_ml import search_with_ml
# Chatbot moved to hue_portal.chatbot app
# Keeping import for backward compatibility
try:
    from hue_portal.chatbot.chatbot import get_chatbot
except ImportError:
    from .chatbot import get_chatbot

def normalize_query(q: str) -> str:
  return (q or "").strip()

@api_view(["GET"])
def search(request):
  """Unified search endpoint - searches across all models."""
  q = normalize_query(request.GET.get("q", ""))
  type_ = request.GET.get("type")  # Optional: filter by type
  
  if not q:
    return Response({"error": "q parameter is required"}, status=400)
  
  results = []
  
  # Search Procedures
  if not type_ or type_ == "procedure":
    proc_qs = Procedure.objects.all()
    proc_text_fields = ["title", "domain", "conditions", "dossier"]
    proc_results = search_with_ml(proc_qs, q, proc_text_fields, top_k=10, min_score=0.1)
    for obj in proc_results:
      results.append({
        "type": "procedure",
        "data": ProcedureSerializer(obj).data,
        "relevance": getattr(obj, '_ml_score', 0.5)
      })
  
  # Search Fines
  if not type_ or type_ == "fine":
    fine_qs = Fine.objects.all()
    fine_text_fields = ["name", "code", "article", "decree", "remedial"]
    fine_results = search_with_ml(fine_qs, q, fine_text_fields, top_k=10, min_score=0.1)
    for obj in fine_results:
      results.append({
        "type": "fine",
        "data": FineSerializer(obj).data,
        "relevance": getattr(obj, '_ml_score', 0.5)
      })
  
  # Search Offices
  if not type_ or type_ == "office":
    office_qs = Office.objects.all()
    office_text_fields = ["unit_name", "address", "district", "service_scope"]
    office_results = search_with_ml(office_qs, q, office_text_fields, top_k=10, min_score=0.1)
    for obj in office_results:
      results.append({
        "type": "office",
        "data": OfficeSerializer(obj).data,
        "relevance": getattr(obj, '_ml_score', 0.5)
      })
  
  # Search Advisories
  if not type_ or type_ == "advisory":
    adv_qs = Advisory.objects.all()
    adv_text_fields = ["title", "summary"]
    adv_results = search_with_ml(adv_qs, q, adv_text_fields, top_k=10, min_score=0.1)
    for obj in adv_results:
      results.append({
        "type": "advisory",
        "data": AdvisorySerializer(obj).data,
        "relevance": getattr(obj, '_ml_score', 0.5)
      })

  if not type_ or type_ == "legal":
    legal_qs = LegalSection.objects.select_related("document").all()
    legal_text_fields = ["section_title", "section_code", "content"]
    legal_results = search_with_ml(legal_qs, q, legal_text_fields, top_k=10, min_score=0.1)
    for obj in legal_results:
      results.append({
        "type": "legal",
        "data": LegalSectionSerializer(obj, context={"request": request}).data,
        "relevance": getattr(obj, '_ml_score', 0.5)
      })
  
  # Sort by relevance score
  results.sort(key=lambda x: x["relevance"], reverse=True)
  
  return Response({
    "query": q,
    "count": len(results),
    "results": results[:50]  # Limit total results
  })

@api_view(["GET"])
def procedures_list(request):
  q = normalize_query(request.GET.get("q", ""))
  domain = request.GET.get("domain")
  level = request.GET.get("level")
  qs = Procedure.objects.all()
  if domain: qs = qs.filter(domain__iexact=domain)
  if level: qs = qs.filter(level__iexact=level)
  if q:
    # Use ML-based search for better results
    text_fields = ["title", "domain", "conditions", "dossier"]
    qs = search_with_ml(qs, q, text_fields, top_k=100, min_score=0.1)
  return Response(ProcedureSerializer(qs[:100], many=True).data)

@api_view(["GET"])
def procedures_detail(request, pk:int):
  try:
    obj = Procedure.objects.get(pk=pk)
  except Procedure.DoesNotExist:
    return Response(status=404)
  return Response(ProcedureSerializer(obj).data)

@api_view(["GET"])
def fines_list(request):
  q = normalize_query(request.GET.get("q", ""))
  code = request.GET.get("code")
  qs = Fine.objects.all()
  if code: qs = qs.filter(code__iexact=code)
  if q:
    # Use ML-based search for better results
    text_fields = ["name", "code", "article", "decree", "remedial"]
    qs = search_with_ml(qs, q, text_fields, top_k=100, min_score=0.1)
  return Response(FineSerializer(qs[:100], many=True).data)

@api_view(["GET"])
def fines_detail(request, pk:int):
  try:
    obj = Fine.objects.get(pk=pk)
  except Fine.DoesNotExist:
    return Response(status=404)
  return Response(FineSerializer(obj).data)

@api_view(["GET"])
def offices_list(request):
  q = normalize_query(request.GET.get("q", ""))
  district = request.GET.get("district")
  qs = Office.objects.all()
  if district: qs = qs.filter(district__iexact=district)
  if q:
    # Use ML-based search for better results
    text_fields = ["unit_name", "address", "district", "service_scope"]
    qs = search_with_ml(qs, q, text_fields, top_k=100, min_score=0.1)
  return Response(OfficeSerializer(qs[:100], many=True).data)

@api_view(["GET"])
def offices_detail(request, pk:int):
  try:
    obj = Office.objects.get(pk=pk)
  except Office.DoesNotExist:
    return Response(status=404)
  return Response(OfficeSerializer(obj).data)

@api_view(["GET"])
def advisories_list(request):
  q = normalize_query(request.GET.get("q", ""))
  qs = Advisory.objects.all().order_by("-published_at")
  if q:
    # Use ML-based search for better results
    text_fields = ["title", "summary"]
    qs = search_with_ml(qs, q, text_fields, top_k=100, min_score=0.1)
  return Response(AdvisorySerializer(qs[:100], many=True).data)

@api_view(["GET"])
def advisories_detail(request, pk:int):
  try:
    obj = Advisory.objects.get(pk=pk)
  except Advisory.DoesNotExist:
    return Response(status=404)
  return Response(AdvisorySerializer(obj).data)

@api_view(["GET"])
def legal_sections_list(request):
  q = normalize_query(request.GET.get("q", ""))
  document_code = request.GET.get("document_code")
  section_code = request.GET.get("section_code")
  qs = LegalSection.objects.select_related("document").all()
  if document_code:
    qs = qs.filter(document__code__iexact=document_code)
  if section_code:
    qs = qs.filter(section_code__icontains=section_code)
  if q:
    text_fields = ["section_title", "section_code", "content"]
    qs = search_with_ml(qs, q, text_fields, top_k=100, min_score=0.1)
  return Response(LegalSectionSerializer(qs[:100], many=True, context={"request": request}).data)

@api_view(["GET"])
def legal_sections_detail(request, pk:int):
  try:
    obj = LegalSection.objects.select_related("document").get(pk=pk)
  except LegalSection.DoesNotExist:
    return Response(status=404)
  return Response(LegalSectionSerializer(obj, context={"request": request}).data)

@api_view(["GET"])
def legal_document_download(request, pk:int):
  try:
    doc = LegalDocument.objects.get(pk=pk)
  except LegalDocument.DoesNotExist:
    raise Http404("Document not found")
  if not doc.source_file:
    raise Http404("Document missing source file")
  file_path = Path(doc.source_file)
  if not file_path.exists():
    raise Http404("Source file not found on server")
  response = FileResponse(open(file_path, "rb"), as_attachment=True, filename=file_path.name)
  return response


def _has_upload_access(request):
  if getattr(request, "user", None) and request.user.is_authenticated:
    return True
  expected = getattr(settings, "LEGAL_UPLOAD_TOKEN", "")
  header_token = request.headers.get("X-Upload-Token")
  return bool(expected and header_token and header_token == expected)


@api_view(["POST"])
@parser_classes([MultiPartParser, FormParser])
def legal_document_upload(request):
  if not _has_upload_access(request):
    return Response({"error": "unauthorized"}, status=403)

  upload = request.FILES.get("file")
  if not upload:
    return Response({"error": "file is required"}, status=400)

  code = (request.data.get("code") or "").strip()
  if not code:
    return Response({"error": "code is required"}, status=400)

  metadata = {
    "code": code,
    "title": request.data.get("title") or code,
    "doc_type": request.data.get("doc_type", "other"),
    "summary": request.data.get("summary", ""),
    "issued_by": request.data.get("issued_by", ""),
    "issued_at": request.data.get("issued_at"),
    "source_url": request.data.get("source_url", ""),
    "mime_type": request.data.get("mime_type") or getattr(upload, "content_type", ""),
    "metadata": {},
  }
  extra_meta = request.data.get("metadata")
  if extra_meta:
    try:
      metadata["metadata"] = json.loads(extra_meta) if isinstance(extra_meta, str) else extra_meta
    except Exception:
      return Response({"error": "metadata must be valid JSON"}, status=400)

  try:
    job = enqueue_ingestion_job(
      file_obj=upload,
      filename=upload.name,
      metadata=metadata,
    )
  except ValueError as exc:
    return Response({"error": str(exc)}, status=400)
  except Exception as exc:
    return Response({"error": str(exc)}, status=500)

  serialized = IngestionJobSerializer(job, context={"request": request}).data
  return Response(serialized, status=202)


@api_view(["GET"])
def legal_ingestion_job_detail(request, job_id):
  job = get_object_or_404(IngestionJob, id=job_id)
  return Response(IngestionJobSerializer(job, context={"request": request}).data)


@api_view(["GET"])
def legal_ingestion_job_list(request):
  code = request.GET.get("code")
  qs = IngestionJob.objects.all()
  if code:
    qs = qs.filter(code=code)
  qs = qs.order_by("-created_at")[:20]
  serializer = IngestionJobSerializer(qs, many=True, context={"request": request})
  return Response(serializer.data)

@api_view(["POST"])
def chat(request):
  """Chatbot endpoint for natural language queries."""
  message = request.data.get("message", "").strip()
  if not message:
    return Response({"error": "message is required"}, status=400)
  
  try:
    chatbot = get_chatbot()
    response = chatbot.generate_response(message)
    return Response(response)
  except Exception as e:
    return Response({
      "message": "Xin lỗi, có lỗi xảy ra. Vui lòng thử lại.",
      "intent": "error",
      "error": str(e),
      "results": [],
      "count": 0
    }, status=500)