File size: 10,282 Bytes
519b145
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
"""
Dual-Path RAG Router - Routes queries to Fast Path (golden dataset) or Slow Path (full RAG).
"""
from __future__ import annotations

import re
import unicodedata
from dataclasses import dataclass
from typing import Dict, Optional, List, Tuple
import numpy as np
from django.db.models import Q

from hue_portal.core.models import GoldenQuery
from hue_portal.core.embeddings import get_embedding_model


@dataclass
class RouteDecision:
    """Decision from Dual-Path Router."""
    path: str  # "fast_path" or "slow_path"
    method: str  # "keyword" or "llm" or "similarity" or "default"
    confidence: float
    matched_golden_query_id: Optional[int] = None
    similarity_score: Optional[float] = None
    intent: Optional[str] = None
    rationale: str = ""


class KeywordRouter:
    """Fast keyword-based router to match queries against golden dataset."""
    
    def __init__(self):
        self._normalize_cache = {}
    
    def _normalize_query(self, query: str) -> str:
        """Normalize query for matching (lowercase, remove accents, extra spaces)."""
        if query in self._normalize_cache:
            return self._normalize_cache[query]
        
        normalized = query.lower().strip()
        # Remove accents for accent-insensitive matching
        normalized = unicodedata.normalize("NFD", normalized)
        normalized = "".join(ch for ch in normalized if unicodedata.category(ch) != "Mn")
        # Remove extra spaces
        normalized = re.sub(r'\s+', ' ', normalized).strip()
        
        self._normalize_cache[query] = normalized
        return normalized
    
    def route(self, query: str, intent: str, confidence: float) -> RouteDecision:
        """
        Try to match query against golden dataset using keyword matching.
        
        Returns:
            RouteDecision with path="fast_path" if match found, else path="slow_path"
        """
        query_normalized = self._normalize_query(query)
        
        # Try exact match first (fastest)
        try:
            golden_query = GoldenQuery.objects.get(
                query_normalized=query_normalized,
                is_active=True
            )
            return RouteDecision(
                path="fast_path",
                method="keyword",
                confidence=1.0,
                matched_golden_query_id=golden_query.id,
                intent=intent,
                rationale="exact_match"
            )
        except (GoldenQuery.DoesNotExist, GoldenQuery.MultipleObjectsReturned):
            pass
        
        # Try fuzzy match: check if query contains golden query or vice versa
        # This handles variations like "mức phạt vượt đèn đỏ" vs "vượt đèn đỏ phạt bao nhiêu"
        try:
            # Find golden queries with same intent
            golden_queries = GoldenQuery.objects.filter(
                intent=intent,
                is_active=True
            )[:50]  # Limit to avoid too many comparisons
            
            for gq in golden_queries:
                gq_normalized = self._normalize_query(gq.query)
                
                # Check if query is substring of golden query or vice versa
                if (query_normalized in gq_normalized or 
                    gq_normalized in query_normalized):
                    # Calculate similarity (simple Jaccard similarity)
                    query_words = set(query_normalized.split())
                    gq_words = set(gq_normalized.split())
                    if query_words and gq_words:
                        similarity = len(query_words & gq_words) / len(query_words | gq_words)
                        if similarity >= 0.7:  # 70% word overlap
                            return RouteDecision(
                                path="fast_path",
                                method="keyword",
                                confidence=similarity,
                                matched_golden_query_id=gq.id,
                                similarity_score=similarity,
                                intent=intent,
                                rationale="fuzzy_match"
                            )
        except Exception:
            pass
        
        # No match found
        return RouteDecision(
            path="slow_path",
            method="keyword",
            confidence=confidence,
            intent=intent,
            rationale="no_keyword_match"
        )


class DualPathRouter:
    """Main router that decides Fast Path vs Slow Path using hybrid approach."""
    
    def __init__(self, similarity_threshold: float = 0.85):
        """
        Initialize Dual-Path Router.
        
        Args:
            similarity_threshold: Minimum similarity score for semantic matching (default: 0.85)
        """
        self.keyword_router = KeywordRouter()
        self.llm_router = None  # Lazy load if needed
        self.similarity_threshold = similarity_threshold
        self._embedding_model = None
    
    def route(self, query: str, intent: str, confidence: float) -> RouteDecision:
        """
        Route query to Fast Path or Slow Path.
        
        Args:
            query: User query string.
            intent: Detected intent.
            confidence: Intent classification confidence.
        
        Returns:
            RouteDecision with path, method, and matched golden query ID if applicable.
        """
        # Step 1: Keyword-based routing (fastest, ~1-5ms)
        keyword_decision = self.keyword_router.route(query, intent, confidence)
        if keyword_decision.path == "fast_path":
            return keyword_decision
        
        # Step 2: Semantic similarity search in golden dataset (~50-100ms)
        similarity_match = self._find_similar_golden_query(query, intent)
        if similarity_match and similarity_match['score'] >= self.similarity_threshold:
            return RouteDecision(
                path="fast_path",
                method="similarity",
                confidence=similarity_match['score'],
                matched_golden_query_id=similarity_match['id'],
                similarity_score=similarity_match['score'],
                intent=intent,
                rationale="semantic_similarity"
            )
        
        # Step 3: LLM router fallback (for edge cases, ~100-200ms)
        # Only use if confidence is low (uncertain intent)
        if confidence < 0.7:
            llm_decision = self._llm_route(query, intent)
            if llm_decision and llm_decision.path == "fast_path":
                return llm_decision
        
        # Default: Slow Path (full RAG pipeline)
        return RouteDecision(
            path="slow_path",
            method="default",
            confidence=confidence,
            intent=intent,
            rationale="no_fast_path_match"
        )
    
    def _find_similar_golden_query(self, query: str, intent: str) -> Optional[Dict]:
        """
        Find similar query in golden dataset using semantic search.
        
        Args:
            query: User query.
            intent: Detected intent.
        
        Returns:
            Dict with 'id' and 'score' if match found, None otherwise.
        """
        try:
            # Get active golden queries with same intent
            golden_queries = list(
                GoldenQuery.objects.filter(
                    intent=intent,
                    is_active=True,
                    query_embedding__isnull=False
                )[:100]  # Limit for performance
            )
            
            if not golden_queries:
                return None
            
            # Get embedding model
            embedding_model = self._get_embedding_model()
            if not embedding_model:
                return None
            
            # Generate query embedding
            query_embedding = embedding_model.encode(query, convert_to_numpy=True)
            query_embedding = query_embedding / np.linalg.norm(query_embedding)  # Normalize
            
            # Calculate similarities
            best_match = None
            best_score = 0.0
            
            for gq in golden_queries:
                if not gq.query_embedding:
                    continue
                
                # Load golden query embedding
                gq_embedding = np.array(gq.query_embedding)
                if len(gq_embedding) == 0:
                    continue
                
                # Normalize
                gq_embedding = gq_embedding / np.linalg.norm(gq_embedding)
                
                # Calculate cosine similarity
                similarity = float(np.dot(query_embedding, gq_embedding))
                
                if similarity > best_score:
                    best_score = similarity
                    best_match = gq.id
            
            if best_match and best_score >= self.similarity_threshold:
                return {
                    'id': best_match,
                    'score': best_score
                }
            
            return None
            
        except Exception as e:
            # Log error but don't fail
            import logging
            logger = logging.getLogger(__name__)
            logger.warning(f"Error in semantic similarity search: {e}")
            return None
    
    def _get_embedding_model(self):
        """Lazy load embedding model."""
        if self._embedding_model is None:
            self._embedding_model = get_embedding_model()
        return self._embedding_model
    
    def _llm_route(self, query: str, intent: str) -> Optional[RouteDecision]:
        """
        Use LLM to decide routing (optional, for edge cases).
        
        This is a fallback for low-confidence queries where keyword and similarity
        didn't find a match, but LLM might recognize it as a common query.
        
        Args:
            query: User query.
            intent: Detected intent.
        
        Returns:
            RouteDecision if LLM finds a match, None otherwise.
        """
        # For now, return None (LLM routing can be implemented later if needed)
        # This would require a small LLM (7B) to classify if query matches golden dataset
        return None