Spaces:
Sleeping
Sleeping
File size: 14,922 Bytes
3acdc71 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 |
"""Disk Cache Recipes
"""
import functools
import math
import os
import random
import threading
import time
from .core import ENOVAL, args_to_key, full_name
class Averager:
"""Recipe for calculating a running average.
Sometimes known as "online statistics," the running average maintains the
total and count. The average can then be calculated at any time.
Assumes the key will not be evicted. Set the eviction policy to 'none' on
the cache to guarantee the key is not evicted.
>>> import diskcache
>>> cache = diskcache.FanoutCache()
>>> ave = Averager(cache, 'latency')
>>> ave.add(0.080)
>>> ave.add(0.120)
>>> ave.get()
0.1
>>> ave.add(0.160)
>>> ave.pop()
0.12
>>> print(ave.get())
None
"""
def __init__(self, cache, key, expire=None, tag=None):
self._cache = cache
self._key = key
self._expire = expire
self._tag = tag
def add(self, value):
"""Add `value` to average."""
with self._cache.transact(retry=True):
total, count = self._cache.get(self._key, default=(0.0, 0))
total += value
count += 1
self._cache.set(
self._key,
(total, count),
expire=self._expire,
tag=self._tag,
)
def get(self):
"""Get current average or return `None` if count equals zero."""
total, count = self._cache.get(self._key, default=(0.0, 0), retry=True)
return None if count == 0 else total / count
def pop(self):
"""Return current average and delete key."""
total, count = self._cache.pop(self._key, default=(0.0, 0), retry=True)
return None if count == 0 else total / count
class Lock:
"""Recipe for cross-process and cross-thread lock.
Assumes the key will not be evicted. Set the eviction policy to 'none' on
the cache to guarantee the key is not evicted.
>>> import diskcache
>>> cache = diskcache.Cache()
>>> lock = Lock(cache, 'report-123')
>>> lock.acquire()
>>> lock.release()
>>> with lock:
... pass
"""
def __init__(self, cache, key, expire=None, tag=None):
self._cache = cache
self._key = key
self._expire = expire
self._tag = tag
def acquire(self):
"""Acquire lock using spin-lock algorithm."""
while True:
added = self._cache.add(
self._key,
None,
expire=self._expire,
tag=self._tag,
retry=True,
)
if added:
break
time.sleep(0.001)
def release(self):
"""Release lock by deleting key."""
self._cache.delete(self._key, retry=True)
def locked(self):
"""Return true if the lock is acquired."""
return self._key in self._cache
def __enter__(self):
self.acquire()
def __exit__(self, *exc_info):
self.release()
class RLock:
"""Recipe for cross-process and cross-thread re-entrant lock.
Assumes the key will not be evicted. Set the eviction policy to 'none' on
the cache to guarantee the key is not evicted.
>>> import diskcache
>>> cache = diskcache.Cache()
>>> rlock = RLock(cache, 'user-123')
>>> rlock.acquire()
>>> rlock.acquire()
>>> rlock.release()
>>> with rlock:
... pass
>>> rlock.release()
>>> rlock.release()
Traceback (most recent call last):
...
AssertionError: cannot release un-acquired lock
"""
def __init__(self, cache, key, expire=None, tag=None):
self._cache = cache
self._key = key
self._expire = expire
self._tag = tag
def acquire(self):
"""Acquire lock by incrementing count using spin-lock algorithm."""
pid = os.getpid()
tid = threading.get_ident()
pid_tid = '{}-{}'.format(pid, tid)
while True:
with self._cache.transact(retry=True):
value, count = self._cache.get(self._key, default=(None, 0))
if pid_tid == value or count == 0:
self._cache.set(
self._key,
(pid_tid, count + 1),
expire=self._expire,
tag=self._tag,
)
return
time.sleep(0.001)
def release(self):
"""Release lock by decrementing count."""
pid = os.getpid()
tid = threading.get_ident()
pid_tid = '{}-{}'.format(pid, tid)
with self._cache.transact(retry=True):
value, count = self._cache.get(self._key, default=(None, 0))
is_owned = pid_tid == value and count > 0
assert is_owned, 'cannot release un-acquired lock'
self._cache.set(
self._key,
(value, count - 1),
expire=self._expire,
tag=self._tag,
)
def __enter__(self):
self.acquire()
def __exit__(self, *exc_info):
self.release()
class BoundedSemaphore:
"""Recipe for cross-process and cross-thread bounded semaphore.
Assumes the key will not be evicted. Set the eviction policy to 'none' on
the cache to guarantee the key is not evicted.
>>> import diskcache
>>> cache = diskcache.Cache()
>>> semaphore = BoundedSemaphore(cache, 'max-cons', value=2)
>>> semaphore.acquire()
>>> semaphore.acquire()
>>> semaphore.release()
>>> with semaphore:
... pass
>>> semaphore.release()
>>> semaphore.release()
Traceback (most recent call last):
...
AssertionError: cannot release un-acquired semaphore
"""
def __init__(self, cache, key, value=1, expire=None, tag=None):
self._cache = cache
self._key = key
self._value = value
self._expire = expire
self._tag = tag
def acquire(self):
"""Acquire semaphore by decrementing value using spin-lock algorithm."""
while True:
with self._cache.transact(retry=True):
value = self._cache.get(self._key, default=self._value)
if value > 0:
self._cache.set(
self._key,
value - 1,
expire=self._expire,
tag=self._tag,
)
return
time.sleep(0.001)
def release(self):
"""Release semaphore by incrementing value."""
with self._cache.transact(retry=True):
value = self._cache.get(self._key, default=self._value)
assert self._value > value, 'cannot release un-acquired semaphore'
value += 1
self._cache.set(
self._key,
value,
expire=self._expire,
tag=self._tag,
)
def __enter__(self):
self.acquire()
def __exit__(self, *exc_info):
self.release()
def throttle(
cache,
count,
seconds,
name=None,
expire=None,
tag=None,
time_func=time.time,
sleep_func=time.sleep,
):
"""Decorator to throttle calls to function.
Assumes keys will not be evicted. Set the eviction policy to 'none' on the
cache to guarantee the keys are not evicted.
>>> import diskcache, time
>>> cache = diskcache.Cache()
>>> count = 0
>>> @throttle(cache, 2, 1) # 2 calls per 1 second
... def increment():
... global count
... count += 1
>>> start = time.time()
>>> while (time.time() - start) <= 2:
... increment()
>>> count in (6, 7) # 6 or 7 calls depending on CPU load
True
"""
def decorator(func):
rate = count / float(seconds)
key = full_name(func) if name is None else name
now = time_func()
cache.set(key, (now, count), expire=expire, tag=tag, retry=True)
@functools.wraps(func)
def wrapper(*args, **kwargs):
while True:
with cache.transact(retry=True):
last, tally = cache.get(key)
now = time_func()
tally += (now - last) * rate
delay = 0
if tally > count:
cache.set(key, (now, count - 1), expire)
elif tally >= 1:
cache.set(key, (now, tally - 1), expire)
else:
delay = (1 - tally) / rate
if delay:
sleep_func(delay)
else:
break
return func(*args, **kwargs)
return wrapper
return decorator
def barrier(cache, lock_factory, name=None, expire=None, tag=None):
"""Barrier to calling decorated function.
Supports different kinds of locks: Lock, RLock, BoundedSemaphore.
Assumes keys will not be evicted. Set the eviction policy to 'none' on the
cache to guarantee the keys are not evicted.
>>> import diskcache, time
>>> cache = diskcache.Cache()
>>> @barrier(cache, Lock)
... def work(num):
... print('worker started')
... time.sleep(1)
... print('worker finished')
>>> import multiprocessing.pool
>>> pool = multiprocessing.pool.ThreadPool(2)
>>> _ = pool.map(work, range(2))
worker started
worker finished
worker started
worker finished
>>> pool.terminate()
"""
def decorator(func):
key = full_name(func) if name is None else name
lock = lock_factory(cache, key, expire=expire, tag=tag)
@functools.wraps(func)
def wrapper(*args, **kwargs):
with lock:
return func(*args, **kwargs)
return wrapper
return decorator
def memoize_stampede(
cache, expire, name=None, typed=False, tag=None, beta=1, ignore=()
):
"""Memoizing cache decorator with cache stampede protection.
Cache stampedes are a type of system overload that can occur when parallel
computing systems using memoization come under heavy load. This behaviour
is sometimes also called dog-piling, cache miss storm, cache choking, or
the thundering herd problem.
The memoization decorator implements cache stampede protection through
early recomputation. Early recomputation of function results will occur
probabilistically before expiration in a background thread of
execution. Early probabilistic recomputation is based on research by
Vattani, A.; Chierichetti, F.; Lowenstein, K. (2015), Optimal Probabilistic
Cache Stampede Prevention, VLDB, pp. 886-897, ISSN 2150-8097
If name is set to None (default), the callable name will be determined
automatically.
If typed is set to True, function arguments of different types will be
cached separately. For example, f(3) and f(3.0) will be treated as distinct
calls with distinct results.
The original underlying function is accessible through the `__wrapped__`
attribute. This is useful for introspection, for bypassing the cache, or
for rewrapping the function with a different cache.
>>> from diskcache import Cache
>>> cache = Cache()
>>> @memoize_stampede(cache, expire=1)
... def fib(number):
... if number == 0:
... return 0
... elif number == 1:
... return 1
... else:
... return fib(number - 1) + fib(number - 2)
>>> print(fib(100))
354224848179261915075
An additional `__cache_key__` attribute can be used to generate the cache
key used for the given arguments.
>>> key = fib.__cache_key__(100)
>>> del cache[key]
Remember to call memoize when decorating a callable. If you forget, then a
TypeError will occur.
:param cache: cache to store callable arguments and return values
:param float expire: seconds until arguments expire
:param str name: name given for callable (default None, automatic)
:param bool typed: cache different types separately (default False)
:param str tag: text to associate with arguments (default None)
:param set ignore: positional or keyword args to ignore (default ())
:return: callable decorator
"""
# Caution: Nearly identical code exists in Cache.memoize
def decorator(func):
"""Decorator created by memoize call for callable."""
base = (full_name(func),) if name is None else (name,)
def timer(*args, **kwargs):
"""Time execution of `func` and return result and time delta."""
start = time.time()
result = func(*args, **kwargs)
delta = time.time() - start
return result, delta
@functools.wraps(func)
def wrapper(*args, **kwargs):
"""Wrapper for callable to cache arguments and return values."""
key = wrapper.__cache_key__(*args, **kwargs)
pair, expire_time = cache.get(
key,
default=ENOVAL,
expire_time=True,
retry=True,
)
if pair is not ENOVAL:
result, delta = pair
now = time.time()
ttl = expire_time - now
if (-delta * beta * math.log(random.random())) < ttl:
return result # Cache hit.
# Check whether a thread has started for early recomputation.
thread_key = key + (ENOVAL,)
thread_added = cache.add(
thread_key,
None,
expire=delta,
retry=True,
)
if thread_added:
# Start thread for early recomputation.
def recompute():
with cache:
pair = timer(*args, **kwargs)
cache.set(
key,
pair,
expire=expire,
tag=tag,
retry=True,
)
thread = threading.Thread(target=recompute)
thread.daemon = True
thread.start()
return result
pair = timer(*args, **kwargs)
cache.set(key, pair, expire=expire, tag=tag, retry=True)
return pair[0]
def __cache_key__(*args, **kwargs):
"""Make key for cache given function arguments."""
return args_to_key(base, args, kwargs, typed, ignore)
wrapper.__cache_key__ = __cache_key__
return wrapper
return decorator
|