Upload backend/core/tests/test_embeddings.py with huggingface_hub
Browse files
backend/core/tests/test_embeddings.py
ADDED
|
@@ -0,0 +1,146 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
Unit tests for embeddings functionality.
|
| 3 |
+
"""
|
| 4 |
+
import unittest
|
| 5 |
+
import numpy as np
|
| 6 |
+
from django.test import TestCase
|
| 7 |
+
|
| 8 |
+
from hue_portal.core.embeddings import (
|
| 9 |
+
get_embedding_model,
|
| 10 |
+
generate_embedding,
|
| 11 |
+
generate_embeddings_batch,
|
| 12 |
+
cosine_similarity,
|
| 13 |
+
get_embedding_dimension
|
| 14 |
+
)
|
| 15 |
+
from hue_portal.core.embedding_utils import (
|
| 16 |
+
save_embedding,
|
| 17 |
+
load_embedding,
|
| 18 |
+
has_embedding
|
| 19 |
+
)
|
| 20 |
+
|
| 21 |
+
|
| 22 |
+
class EmbeddingsTestCase(TestCase):
|
| 23 |
+
"""Test embedding generation and utilities."""
|
| 24 |
+
|
| 25 |
+
def test_get_embedding_model(self):
|
| 26 |
+
"""Test loading embedding model."""
|
| 27 |
+
model = get_embedding_model()
|
| 28 |
+
# Model might not be available in test environment
|
| 29 |
+
# Just check that function doesn't crash
|
| 30 |
+
self.assertIsNotNone(model or True)
|
| 31 |
+
|
| 32 |
+
def test_generate_embedding(self):
|
| 33 |
+
"""Test generating embedding for a single text."""
|
| 34 |
+
text = "Thủ tục đăng ký cư trú"
|
| 35 |
+
embedding = generate_embedding(text)
|
| 36 |
+
|
| 37 |
+
if embedding is not None:
|
| 38 |
+
self.assertIsInstance(embedding, np.ndarray)
|
| 39 |
+
self.assertGreater(len(embedding), 0)
|
| 40 |
+
|
| 41 |
+
def test_generate_embeddings_batch(self):
|
| 42 |
+
"""Test generating embeddings for multiple texts."""
|
| 43 |
+
texts = [
|
| 44 |
+
"Thủ tục đăng ký cư trú",
|
| 45 |
+
"Mức phạt vượt đèn đỏ",
|
| 46 |
+
"Địa chỉ công an phường"
|
| 47 |
+
]
|
| 48 |
+
embeddings = generate_embeddings_batch(texts, batch_size=2)
|
| 49 |
+
|
| 50 |
+
if embeddings and embeddings[0] is not None:
|
| 51 |
+
self.assertEqual(len(embeddings), len(texts))
|
| 52 |
+
self.assertIsInstance(embeddings[0], np.ndarray)
|
| 53 |
+
|
| 54 |
+
def test_cosine_similarity(self):
|
| 55 |
+
"""Test cosine similarity calculation."""
|
| 56 |
+
vec1 = np.array([1.0, 0.0, 0.0])
|
| 57 |
+
vec2 = np.array([1.0, 0.0, 0.0])
|
| 58 |
+
|
| 59 |
+
similarity = cosine_similarity(vec1, vec2)
|
| 60 |
+
self.assertAlmostEqual(similarity, 1.0, places=5)
|
| 61 |
+
|
| 62 |
+
vec3 = np.array([0.0, 1.0, 0.0])
|
| 63 |
+
similarity2 = cosine_similarity(vec1, vec3)
|
| 64 |
+
self.assertAlmostEqual(similarity2, 0.0, places=5)
|
| 65 |
+
|
| 66 |
+
def test_cosine_similarity_orthogonal(self):
|
| 67 |
+
"""Test cosine similarity for orthogonal vectors."""
|
| 68 |
+
vec1 = np.array([1.0, 0.0])
|
| 69 |
+
vec2 = np.array([0.0, 1.0])
|
| 70 |
+
|
| 71 |
+
similarity = cosine_similarity(vec1, vec2)
|
| 72 |
+
self.assertAlmostEqual(similarity, 0.0, places=5)
|
| 73 |
+
|
| 74 |
+
def test_get_embedding_dimension(self):
|
| 75 |
+
"""Test getting embedding dimension."""
|
| 76 |
+
dim = get_embedding_dimension()
|
| 77 |
+
# Dimension might be 0 if model not available
|
| 78 |
+
self.assertIsInstance(dim, int)
|
| 79 |
+
self.assertGreaterEqual(dim, 0)
|
| 80 |
+
|
| 81 |
+
def test_similar_texts_have_similar_embeddings(self):
|
| 82 |
+
"""Test that similar texts produce similar embeddings."""
|
| 83 |
+
text1 = "Thủ tục đăng ký cư trú"
|
| 84 |
+
text2 = "Đăng ký thủ tục cư trú"
|
| 85 |
+
text3 = "Mức phạt giao thông"
|
| 86 |
+
|
| 87 |
+
emb1 = generate_embedding(text1)
|
| 88 |
+
emb2 = generate_embedding(text2)
|
| 89 |
+
emb3 = generate_embedding(text3)
|
| 90 |
+
|
| 91 |
+
if emb1 is not None and emb2 is not None and emb3 is not None:
|
| 92 |
+
sim_similar = cosine_similarity(emb1, emb2)
|
| 93 |
+
sim_different = cosine_similarity(emb1, emb3)
|
| 94 |
+
|
| 95 |
+
# Similar texts should have higher similarity
|
| 96 |
+
self.assertGreater(sim_similar, sim_different)
|
| 97 |
+
|
| 98 |
+
|
| 99 |
+
class EmbeddingUtilsTestCase(TestCase):
|
| 100 |
+
"""Test embedding utility functions."""
|
| 101 |
+
|
| 102 |
+
def test_save_and_load_embedding(self):
|
| 103 |
+
"""Test saving and loading embeddings."""
|
| 104 |
+
from hue_portal.core.models import Procedure
|
| 105 |
+
|
| 106 |
+
# Create a test procedure
|
| 107 |
+
procedure = Procedure.objects.create(
|
| 108 |
+
title="Test Procedure",
|
| 109 |
+
domain="Test"
|
| 110 |
+
)
|
| 111 |
+
|
| 112 |
+
# Create a dummy embedding
|
| 113 |
+
dummy_embedding = np.random.rand(384).astype(np.float32)
|
| 114 |
+
|
| 115 |
+
# Save embedding
|
| 116 |
+
success = save_embedding(procedure, dummy_embedding)
|
| 117 |
+
self.assertTrue(success)
|
| 118 |
+
|
| 119 |
+
# Reload from database
|
| 120 |
+
procedure.refresh_from_db()
|
| 121 |
+
|
| 122 |
+
# Load embedding
|
| 123 |
+
loaded_embedding = load_embedding(procedure)
|
| 124 |
+
self.assertIsNotNone(loaded_embedding)
|
| 125 |
+
self.assertTrue(np.allclose(dummy_embedding, loaded_embedding))
|
| 126 |
+
|
| 127 |
+
def test_has_embedding(self):
|
| 128 |
+
"""Test checking if instance has embedding."""
|
| 129 |
+
from hue_portal.core.models import Procedure
|
| 130 |
+
|
| 131 |
+
procedure = Procedure.objects.create(
|
| 132 |
+
title="Test Procedure",
|
| 133 |
+
domain="Test"
|
| 134 |
+
)
|
| 135 |
+
|
| 136 |
+
# Initially no embedding
|
| 137 |
+
self.assertFalse(has_embedding(procedure))
|
| 138 |
+
|
| 139 |
+
# Add embedding
|
| 140 |
+
dummy_embedding = np.random.rand(384).astype(np.float32)
|
| 141 |
+
save_embedding(procedure, dummy_embedding)
|
| 142 |
+
|
| 143 |
+
# Refresh and check
|
| 144 |
+
procedure.refresh_from_db()
|
| 145 |
+
self.assertTrue(has_embedding(procedure))
|
| 146 |
+
|