Spaces:
Sleeping
Sleeping
Upload backend/venv/lib/python3.10/site-packages/sentence_transformers/training_args.py with huggingface_hub
Browse files
backend/venv/lib/python3.10/site-packages/sentence_transformers/training_args.py
ADDED
|
@@ -0,0 +1,198 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from __future__ import annotations
|
| 2 |
+
|
| 3 |
+
import logging
|
| 4 |
+
from dataclasses import dataclass, field
|
| 5 |
+
|
| 6 |
+
from transformers import TrainingArguments as TransformersTrainingArguments
|
| 7 |
+
from transformers.training_args import ParallelMode
|
| 8 |
+
from transformers.utils import ExplicitEnum
|
| 9 |
+
|
| 10 |
+
logger = logging.getLogger(__name__)
|
| 11 |
+
|
| 12 |
+
|
| 13 |
+
class BatchSamplers(ExplicitEnum):
|
| 14 |
+
"""
|
| 15 |
+
Stores the acceptable string identifiers for batch samplers.
|
| 16 |
+
|
| 17 |
+
The batch sampler is responsible for determining how samples are grouped into batches during training.
|
| 18 |
+
Valid options are:
|
| 19 |
+
|
| 20 |
+
- ``BatchSamplers.BATCH_SAMPLER``: **[default]** Uses :class:`~sentence_transformers.sampler.DefaultBatchSampler`, the default
|
| 21 |
+
PyTorch batch sampler.
|
| 22 |
+
- ``BatchSamplers.NO_DUPLICATES``: Uses :class:`~sentence_transformers.sampler.NoDuplicatesBatchSampler`,
|
| 23 |
+
ensuring no duplicate samples in a batch. Recommended for losses that use in-batch negatives, such as:
|
| 24 |
+
|
| 25 |
+
- :class:`~sentence_transformers.losses.MultipleNegativesRankingLoss`
|
| 26 |
+
- :class:`~sentence_transformers.losses.CachedMultipleNegativesRankingLoss`
|
| 27 |
+
- :class:`~sentence_transformers.losses.MultipleNegativesSymmetricRankingLoss`
|
| 28 |
+
- :class:`~sentence_transformers.losses.CachedMultipleNegativesSymmetricRankingLoss`
|
| 29 |
+
- :class:`~sentence_transformers.losses.MegaBatchMarginLoss`
|
| 30 |
+
- :class:`~sentence_transformers.losses.GISTEmbedLoss`
|
| 31 |
+
- :class:`~sentence_transformers.losses.CachedGISTEmbedLoss`
|
| 32 |
+
- ``BatchSamplers.GROUP_BY_LABEL``: Uses :class:`~sentence_transformers.sampler.GroupByLabelBatchSampler`,
|
| 33 |
+
ensuring that each batch has 2+ samples from the same label. Recommended for losses that require multiple
|
| 34 |
+
samples from the same label, such as:
|
| 35 |
+
|
| 36 |
+
- :class:`~sentence_transformers.losses.BatchAllTripletLoss`
|
| 37 |
+
- :class:`~sentence_transformers.losses.BatchHardSoftMarginTripletLoss`
|
| 38 |
+
- :class:`~sentence_transformers.losses.BatchHardTripletLoss`
|
| 39 |
+
- :class:`~sentence_transformers.losses.BatchSemiHardTripletLoss`
|
| 40 |
+
|
| 41 |
+
If you want to use a custom batch sampler, you can create a new Trainer class that inherits from
|
| 42 |
+
:class:`~sentence_transformers.trainer.SentenceTransformerTrainer` and overrides the
|
| 43 |
+
:meth:`~sentence_transformers.trainer.SentenceTransformerTrainer.get_batch_sampler` method. The
|
| 44 |
+
method must return a class instance that supports ``__iter__`` and ``__len__`` methods. The former
|
| 45 |
+
should yield a list of indices for each batch, and the latter should return the number of batches.
|
| 46 |
+
|
| 47 |
+
Usage:
|
| 48 |
+
::
|
| 49 |
+
|
| 50 |
+
from sentence_transformers import SentenceTransformer, SentenceTransformerTrainer, SentenceTransformerTrainingArguments
|
| 51 |
+
from sentence_transformers.training_args import BatchSamplers
|
| 52 |
+
from sentence_transformers.losses import MultipleNegativesRankingLoss
|
| 53 |
+
from datasets import Dataset
|
| 54 |
+
|
| 55 |
+
model = SentenceTransformer("microsoft/mpnet-base")
|
| 56 |
+
train_dataset = Dataset.from_dict({
|
| 57 |
+
"anchor": ["It's nice weather outside today.", "He drove to work."],
|
| 58 |
+
"positive": ["It's so sunny.", "He took the car to the office."],
|
| 59 |
+
})
|
| 60 |
+
loss = MultipleNegativesRankingLoss(model)
|
| 61 |
+
args = SentenceTransformerTrainingArguments(
|
| 62 |
+
output_dir="checkpoints",
|
| 63 |
+
batch_sampler=BatchSamplers.NO_DUPLICATES,
|
| 64 |
+
)
|
| 65 |
+
trainer = SentenceTransformerTrainer(
|
| 66 |
+
model=model,
|
| 67 |
+
args=args,
|
| 68 |
+
train_dataset=train_dataset,
|
| 69 |
+
loss=loss,
|
| 70 |
+
)
|
| 71 |
+
trainer.train()
|
| 72 |
+
"""
|
| 73 |
+
|
| 74 |
+
BATCH_SAMPLER = "batch_sampler"
|
| 75 |
+
NO_DUPLICATES = "no_duplicates"
|
| 76 |
+
GROUP_BY_LABEL = "group_by_label"
|
| 77 |
+
|
| 78 |
+
|
| 79 |
+
class MultiDatasetBatchSamplers(ExplicitEnum):
|
| 80 |
+
"""
|
| 81 |
+
Stores the acceptable string identifiers for multi-dataset batch samplers.
|
| 82 |
+
|
| 83 |
+
The multi-dataset batch sampler is responsible for determining in what order batches are sampled from multiple
|
| 84 |
+
datasets during training. Valid options are:
|
| 85 |
+
|
| 86 |
+
- ``MultiDatasetBatchSamplers.ROUND_ROBIN``: Uses :class:`~sentence_transformers.sampler.RoundRobinBatchSampler`,
|
| 87 |
+
which uses round-robin sampling from each dataset until one is exhausted.
|
| 88 |
+
With this strategy, it's likely that not all samples from each dataset are used, but each dataset is sampled
|
| 89 |
+
from equally.
|
| 90 |
+
- ``MultiDatasetBatchSamplers.PROPORTIONAL``: **[default]** Uses :class:`~sentence_transformers.sampler.ProportionalBatchSampler`,
|
| 91 |
+
which samples from each dataset in proportion to its size.
|
| 92 |
+
With this strategy, all samples from each dataset are used and larger datasets are sampled from more frequently.
|
| 93 |
+
|
| 94 |
+
Usage:
|
| 95 |
+
::
|
| 96 |
+
|
| 97 |
+
from sentence_transformers import SentenceTransformer, SentenceTransformerTrainer, SentenceTransformerTrainingArguments
|
| 98 |
+
from sentence_transformers.training_args import MultiDatasetBatchSamplers
|
| 99 |
+
from sentence_transformers.losses import CoSENTLoss
|
| 100 |
+
from datasets import Dataset, DatasetDict
|
| 101 |
+
|
| 102 |
+
model = SentenceTransformer("microsoft/mpnet-base")
|
| 103 |
+
train_general = Dataset.from_dict({
|
| 104 |
+
"sentence_A": ["It's nice weather outside today.", "He drove to work."],
|
| 105 |
+
"sentence_B": ["It's so sunny.", "He took the car to the bank."],
|
| 106 |
+
"score": [0.9, 0.4],
|
| 107 |
+
})
|
| 108 |
+
train_medical = Dataset.from_dict({
|
| 109 |
+
"sentence_A": ["The patient has a fever.", "The doctor prescribed medication.", "The patient is sweating."],
|
| 110 |
+
"sentence_B": ["The patient feels hot.", "The medication was given to the patient.", "The patient is perspiring."],
|
| 111 |
+
"score": [0.8, 0.6, 0.7],
|
| 112 |
+
})
|
| 113 |
+
train_legal = Dataset.from_dict({
|
| 114 |
+
"sentence_A": ["This contract is legally binding.", "The parties agree to the terms and conditions."],
|
| 115 |
+
"sentence_B": ["Both parties acknowledge their obligations.", "By signing this agreement, the parties enter into a legal relationship."],
|
| 116 |
+
"score": [0.7, 0.8],
|
| 117 |
+
})
|
| 118 |
+
train_dataset = DatasetDict({
|
| 119 |
+
"general": train_general,
|
| 120 |
+
"medical": train_medical,
|
| 121 |
+
"legal": train_legal,
|
| 122 |
+
})
|
| 123 |
+
|
| 124 |
+
loss = CoSENTLoss(model)
|
| 125 |
+
args = SentenceTransformerTrainingArguments(
|
| 126 |
+
output_dir="checkpoints",
|
| 127 |
+
multi_dataset_batch_sampler=MultiDatasetBatchSamplers.PROPORTIONAL,
|
| 128 |
+
)
|
| 129 |
+
trainer = SentenceTransformerTrainer(
|
| 130 |
+
model=model,
|
| 131 |
+
args=args,
|
| 132 |
+
train_dataset=train_dataset,
|
| 133 |
+
loss=loss,
|
| 134 |
+
)
|
| 135 |
+
trainer.train()
|
| 136 |
+
"""
|
| 137 |
+
|
| 138 |
+
ROUND_ROBIN = "round_robin" # Round-robin sampling from each dataset
|
| 139 |
+
PROPORTIONAL = "proportional" # Sample from each dataset in proportion to its size [default]
|
| 140 |
+
|
| 141 |
+
|
| 142 |
+
@dataclass
|
| 143 |
+
class SentenceTransformerTrainingArguments(TransformersTrainingArguments):
|
| 144 |
+
"""
|
| 145 |
+
SentenceTransformerTrainingArguments extends :class:`~transformers.TrainingArguments` with additional arguments
|
| 146 |
+
specific to Sentence Transformers. See :class:`~transformers.TrainingArguments` for the complete list of
|
| 147 |
+
available arguments.
|
| 148 |
+
|
| 149 |
+
Args:
|
| 150 |
+
output_dir (`str`):
|
| 151 |
+
The output directory where the model checkpoints will be written.
|
| 152 |
+
batch_sampler (Union[:class:`~sentence_transformers.training_args.BatchSamplers`, `str`], *optional*):
|
| 153 |
+
The batch sampler to use. See :class:`~sentence_transformers.training_args.BatchSamplers` for valid options.
|
| 154 |
+
Defaults to ``BatchSamplers.BATCH_SAMPLER``.
|
| 155 |
+
multi_dataset_batch_sampler (Union[:class:`~sentence_transformers.training_args.MultiDatasetBatchSamplers`, `str`], *optional*):
|
| 156 |
+
The multi-dataset batch sampler to use. See :class:`~sentence_transformers.training_args.MultiDatasetBatchSamplers`
|
| 157 |
+
for valid options. Defaults to ``MultiDatasetBatchSamplers.PROPORTIONAL``.
|
| 158 |
+
"""
|
| 159 |
+
|
| 160 |
+
batch_sampler: BatchSamplers | str = field(
|
| 161 |
+
default=BatchSamplers.BATCH_SAMPLER, metadata={"help": "The batch sampler to use."}
|
| 162 |
+
)
|
| 163 |
+
multi_dataset_batch_sampler: MultiDatasetBatchSamplers | str = field(
|
| 164 |
+
default=MultiDatasetBatchSamplers.PROPORTIONAL, metadata={"help": "The multi-dataset batch sampler to use."}
|
| 165 |
+
)
|
| 166 |
+
|
| 167 |
+
def __post_init__(self):
|
| 168 |
+
super().__post_init__()
|
| 169 |
+
|
| 170 |
+
self.batch_sampler = BatchSamplers(self.batch_sampler)
|
| 171 |
+
self.multi_dataset_batch_sampler = MultiDatasetBatchSamplers(self.multi_dataset_batch_sampler)
|
| 172 |
+
|
| 173 |
+
# The `compute_loss` method in `SentenceTransformerTrainer` is overridden to only compute the prediction loss,
|
| 174 |
+
# so we set `prediction_loss_only` to `True` here to avoid
|
| 175 |
+
self.prediction_loss_only = True
|
| 176 |
+
|
| 177 |
+
# Disable broadcasting of buffers to avoid `RuntimeError: one of the variables needed for gradient computation
|
| 178 |
+
# has been modified by an inplace operation.` when training with DDP & a BertModel-based model.
|
| 179 |
+
self.ddp_broadcast_buffers = False
|
| 180 |
+
|
| 181 |
+
if self.parallel_mode == ParallelMode.NOT_DISTRIBUTED:
|
| 182 |
+
# If output_dir is "unused", then this instance is created to compare training arguments vs the defaults,
|
| 183 |
+
# so we don't have to warn.
|
| 184 |
+
if self.output_dir != "unused":
|
| 185 |
+
logger.warning(
|
| 186 |
+
"Currently using DataParallel (DP) for multi-gpu training, while DistributedDataParallel (DDP) is recommended for faster training. "
|
| 187 |
+
"See https://sbert.net/docs/sentence_transformer/training/distributed.html for more information."
|
| 188 |
+
)
|
| 189 |
+
|
| 190 |
+
elif self.parallel_mode == ParallelMode.DISTRIBUTED and not self.dataloader_drop_last:
|
| 191 |
+
# If output_dir is "unused", then this instance is created to compare training arguments vs the defaults,
|
| 192 |
+
# so we don't have to warn.
|
| 193 |
+
if self.output_dir != "unused":
|
| 194 |
+
logger.warning(
|
| 195 |
+
"When using DistributedDataParallel (DDP), it is recommended to set `dataloader_drop_last=True` to avoid hanging issues with an uneven last batch. "
|
| 196 |
+
"Setting `dataloader_drop_last=True`."
|
| 197 |
+
)
|
| 198 |
+
self.dataloader_drop_last = True
|