daviondk
commited on
Commit
·
61da5bb
1
Parent(s):
80c68d0
add models
Browse files
app.py
CHANGED
|
@@ -6,6 +6,7 @@ from datetime import datetime
|
|
| 6 |
import gradio as gr
|
| 7 |
import torch
|
| 8 |
from transformers import pipeline, TextIteratorStreamer
|
|
|
|
| 9 |
import spaces # Import spaces early to enable ZeroGPU support
|
| 10 |
|
| 11 |
from transformers import (
|
|
@@ -24,87 +25,45 @@ cancel_event = threading.Event()
|
|
| 24 |
# Qwen3 Model Definitions
|
| 25 |
# ------------------------------
|
| 26 |
MODELS = {
|
| 27 |
-
"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 28 |
}
|
| 29 |
-
|
| 30 |
-
# Global cache for pipelines to avoid re-loading.
|
| 31 |
-
PIPELINES = {}
|
| 32 |
-
|
| 33 |
-
def load_pipeline(model_name):
|
| 34 |
-
"""
|
| 35 |
-
Load and cache a transformers pipeline for text generation.
|
| 36 |
-
Tries bfloat16, falls back to float16 or float32 if unsupported.
|
| 37 |
-
"""
|
| 38 |
-
|
| 39 |
-
load_kwargs = {
|
| 40 |
-
"pretrained_model_name_or_path": "daviondk7131/bodrunov-t-lite-lora-16",
|
| 41 |
-
"device_map": "auto",
|
| 42 |
-
"torch_dtype": torch.float16,
|
| 43 |
-
"trust_remote_code": True
|
| 44 |
-
}
|
| 45 |
-
|
| 46 |
-
tokenizer = AutoTokenizer.from_pretrained("t-tech/T-lite-it-1.0")
|
| 47 |
-
model = AutoModelForCausalLM.from_pretrained(**load_kwargs).to("cuda")
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
global PIPELINES
|
| 51 |
-
if model_name in PIPELINES:
|
| 52 |
-
return PIPELINES[model_name]
|
| 53 |
-
repo = MODELS[model_name]["repo_id"]
|
| 54 |
-
for dtype in (torch.bfloat16, torch.float16, torch.float32):
|
| 55 |
-
try:
|
| 56 |
-
pipe = pipeline(
|
| 57 |
-
task="text-generation",
|
| 58 |
-
model=repo,
|
| 59 |
-
tokenizer=repo,
|
| 60 |
-
trust_remote_code=True,
|
| 61 |
-
torch_dtype=dtype,
|
| 62 |
-
device_map="auto"
|
| 63 |
-
)
|
| 64 |
-
PIPELINES[model_name] = pipe
|
| 65 |
-
return pipe
|
| 66 |
-
except Exception:
|
| 67 |
-
continue
|
| 68 |
-
# Final fallback
|
| 69 |
-
pipe = pipeline(
|
| 70 |
-
task="text-generation",
|
| 71 |
-
model=repo,
|
| 72 |
-
tokenizer=repo,
|
| 73 |
-
trust_remote_code=True,
|
| 74 |
-
device_map="auto"
|
| 75 |
-
)
|
| 76 |
-
PIPELINES[model_name] = pipe
|
| 77 |
-
return pipe
|
| 78 |
-
|
| 79 |
-
def format_conversation(history, system_prompt):
|
| 80 |
-
"""
|
| 81 |
-
Flatten chat history and system prompt into a single string.
|
| 82 |
-
"""
|
| 83 |
-
prompt = system_prompt.strip() + "\n"
|
| 84 |
-
|
| 85 |
-
for user_msg, assistant_msg in history:
|
| 86 |
-
prompt += "User: " + user_msg.strip() + "\n"
|
| 87 |
-
if assistant_msg: # might be None or empty
|
| 88 |
-
prompt += "Assistant: " + assistant_msg.strip() + "\n"
|
| 89 |
-
|
| 90 |
-
prompt += "Assistant: "
|
| 91 |
-
return prompt
|
| 92 |
-
|
| 93 |
# Function to get just the model name from the dropdown selection
|
| 94 |
def get_model_name(full_selection):
|
| 95 |
return full_selection.split(" - ")[0]
|
| 96 |
|
|
|
|
| 97 |
# User input handling function
|
| 98 |
def user_input(user_message, history):
|
| 99 |
return "", history + [(user_message, None)]
|
| 100 |
|
| 101 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 102 |
|
| 103 |
|
| 104 |
STYLE_TEMPLATE_PROMPT = """Below is an instruction describing the task, combined with input data that provides further context. Write a response that completes the request accordingly.
|
| 105 |
|
| 106 |
### Instruction:
|
| 107 |
-
Write down the text from the input data in the style of the author
|
| 108 |
|
| 109 |
### Input data:
|
| 110 |
{}
|
|
@@ -160,7 +119,7 @@ def bot_response(history, model_selection, max_tokens, temperature, top_k, top_p
|
|
| 160 |
#history_without_last = history[:-1]
|
| 161 |
|
| 162 |
# Get model name from selection
|
| 163 |
-
|
| 164 |
|
| 165 |
# Format the conversation
|
| 166 |
#conversation = format_conversation(history_without_last, system_prompt)
|
|
@@ -173,17 +132,23 @@ def bot_response(history, model_selection, max_tokens, temperature, top_k, top_p
|
|
| 173 |
"""
|
| 174 |
|
| 175 |
load_kwargs = {
|
| 176 |
-
"pretrained_model_name_or_path": "
|
| 177 |
"device_map": "auto",
|
| 178 |
"torch_dtype": torch.float16,
|
| 179 |
"trust_remote_code": True
|
| 180 |
}
|
| 181 |
|
| 182 |
-
tokenizer = AutoTokenizer.from_pretrained("
|
| 183 |
model = AutoModelForCausalLM.from_pretrained(**load_kwargs).to("cuda")
|
|
|
|
| 184 |
#pipe = load_pipeline(model_name)
|
| 185 |
user_message = history[-1][0]
|
| 186 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 187 |
|
| 188 |
# Update the last message pair with the response
|
| 189 |
history[-1] = (user_message, response)
|
|
|
|
| 6 |
import gradio as gr
|
| 7 |
import torch
|
| 8 |
from transformers import pipeline, TextIteratorStreamer
|
| 9 |
+
from transformers import AutoModelForSequenceClassification, AutoTokenizer
|
| 10 |
import spaces # Import spaces early to enable ZeroGPU support
|
| 11 |
|
| 12 |
from transformers import (
|
|
|
|
| 25 |
# Qwen3 Model Definitions
|
| 26 |
# ------------------------------
|
| 27 |
MODELS = {
|
| 28 |
+
"bodrunov-t-lite-lora-16": {"repo_id": "daviondk7131/bodrunov-t-lite-lora-16", "description": "С. Д. Бодрунов (T-lite)", "reward_repo_id": "daviondk7131/bodrunov-reward-model", "author": "bodrunov", "base_model": "t-tech/T-lite-it-1.0"},
|
| 29 |
+
"shakespeare-deepseek-lora-16": {"repo_id": "daviondk7131/shakespeare-deepseek-lora-16", "description": "У. Шекспир (Deepseek)", "reward_repo_id": "daviondk7131/shakespeare-reward-model", "author": "Shakespeare", "base_model": "deepseek-ai/DeepSeek-R1-Distill-Llama-8B"},
|
| 30 |
+
"chekhov-t-lite-lora-16": {"repo_id": "daviondk7131/chekhov-t-lite-lora-16", "description": "А. П. Чехов (T-lite)", "reward_repo_id": "daviondk7131/chekhov-reward-model", "author": "chekhov_ru", "base_model": "t-tech/T-lite-it-1.0"},
|
| 31 |
+
"tolstoy-t-lite-lora-16": {"repo_id": "daviondk7131/tolstoy-t-lite-lora-16", "description": "Л. Н. Толстой (T-lite)", "reward_repo_id": "daviondk7131/tolstoy-reward-model", "author": "tolstoy_ru", "base_model": "t-tech/T-lite-it-1.0"},
|
| 32 |
+
"dostoevsky-t-lite-lora-16": {"repo_id": "daviondk7131/dostoevsky-t-lite-lora-16", "description": "Ф. М. Достоевский (T-lite)", "reward_repo_id": "daviondk7131/dostoevsky-reward-model", "author": "dostoevsky_ru", "base_model": "t-tech/T-lite-it-1.0"},
|
| 33 |
+
"dostoevsky-yagpt-lora-16": {"repo_id": "daviondk7131/dostoevsky-yagpt-lora-16", "description": "Ф. М. Достоевский (YaGPT)", "reward_repo_id": "daviondk7131/dostoevsky-reward-model", "author": "dostoevsky_ru", "base_model": "yandex/YandexGPT-5-Lite-8B-instruct"},
|
| 34 |
+
"tolstoy-yagpt-lora-16": {"repo_id": "daviondk7131/tolstoy-yagpt-lora-16", "description": "Л. Н. Толстой (YaGPT)", "reward_repo_id": "daviondk7131/tolstoy-reward-model", "author": "tolstoy_ru", "base_model": "yandex/YandexGPT-5-Lite-8B-instruct"},
|
| 35 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 36 |
# Function to get just the model name from the dropdown selection
|
| 37 |
def get_model_name(full_selection):
|
| 38 |
return full_selection.split(" - ")[0]
|
| 39 |
|
| 40 |
+
|
| 41 |
# User input handling function
|
| 42 |
def user_input(user_message, history):
|
| 43 |
return "", history + [(user_message, None)]
|
| 44 |
|
| 45 |
|
| 46 |
+
class RewardModel(object):
|
| 47 |
+
def __init__(self, model_name):
|
| 48 |
+
self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
| 49 |
+
|
| 50 |
+
self.reward_model = AutoModelForSequenceClassification.from_pretrained(model_name, device_map=self.device).to('cuda')
|
| 51 |
+
self.reward_tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 52 |
+
|
| 53 |
+
|
| 54 |
+
def score(self, text):
|
| 55 |
+
inputs = self.reward_tokenizer(text, truncation=True, return_tensors='pt').to(self.device)
|
| 56 |
+
with torch.no_grad():
|
| 57 |
+
value = self.reward_model(**inputs).logits[0, 0].item()
|
| 58 |
+
|
| 59 |
+
return value
|
| 60 |
+
|
| 61 |
|
| 62 |
|
| 63 |
STYLE_TEMPLATE_PROMPT = """Below is an instruction describing the task, combined with input data that provides further context. Write a response that completes the request accordingly.
|
| 64 |
|
| 65 |
### Instruction:
|
| 66 |
+
Write down the text from the input data in the style of the author {}.
|
| 67 |
|
| 68 |
### Input data:
|
| 69 |
{}
|
|
|
|
| 119 |
#history_without_last = history[:-1]
|
| 120 |
|
| 121 |
# Get model name from selection
|
| 122 |
+
model_name = get_model_name(model_selection)
|
| 123 |
|
| 124 |
# Format the conversation
|
| 125 |
#conversation = format_conversation(history_without_last, system_prompt)
|
|
|
|
| 132 |
"""
|
| 133 |
|
| 134 |
load_kwargs = {
|
| 135 |
+
"pretrained_model_name_or_path": MODELS[model_name]["repo_id"],
|
| 136 |
"device_map": "auto",
|
| 137 |
"torch_dtype": torch.float16,
|
| 138 |
"trust_remote_code": True
|
| 139 |
}
|
| 140 |
|
| 141 |
+
tokenizer = AutoTokenizer.from_pretrained(MODELS[model_name]["base_model"])
|
| 142 |
model = AutoModelForCausalLM.from_pretrained(**load_kwargs).to("cuda")
|
| 143 |
+
reward_model = RewardModel(model_name=MODELS[model_name][["reward_repo_id"]])
|
| 144 |
#pipe = load_pipeline(model_name)
|
| 145 |
user_message = history[-1][0]
|
| 146 |
+
|
| 147 |
+
results = []
|
| 148 |
+
for i in range(3):
|
| 149 |
+
results.append(generate(model, tokenizer, user_message, temperature=temperature, top_p=top_p, top_k=top_k, repetition_penalty=repetition_penalty))
|
| 150 |
+
|
| 151 |
+
response = max(results, key=reward_model.score)
|
| 152 |
|
| 153 |
# Update the last message pair with the response
|
| 154 |
history[-1] = (user_message, response)
|