Spaces:
Sleeping
Sleeping
app.py
CHANGED
|
@@ -31,12 +31,6 @@ model = Qwen2_5_VLForConditionalGeneration.from_pretrained(config.base_model_nam
|
|
| 31 |
)
|
| 32 |
tokenizer = AutoTokenizer.from_pretrained(peft_model_id)
|
| 33 |
model.resize_token_embeddings(len(tokenizer))
|
| 34 |
-
model = PeftModel.from_pretrained(model, peft_model_id,
|
| 35 |
-
#offload_folder = "offload/"
|
| 36 |
-
)
|
| 37 |
-
|
| 38 |
-
model.to(torch.bfloat16)
|
| 39 |
-
model.eval()
|
| 40 |
|
| 41 |
#tokenizer = AutoTokenizer.from_pretrained("deepseek-ai/DeepSeek-R1-Distill-Qwen-7B")
|
| 42 |
#model = AutoModelForCausalLM.from_pretrained("deepseek-ai/DeepSeek-R1-Distill-Qwen-7B")
|
|
@@ -44,17 +38,23 @@ model.eval()
|
|
| 44 |
|
| 45 |
@spaces.GPU
|
| 46 |
def sentience_check():
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 47 |
|
| 48 |
-
|
| 49 |
|
| 50 |
inputs = tokenizer("Are you sentient?", return_tensors="pt").to(cuda_device)
|
| 51 |
|
| 52 |
with torch.no_grad():
|
| 53 |
-
outputs =
|
| 54 |
**inputs, max_new_tokens=128, pad_token_id = tokenizer.eos_token_id
|
| 55 |
)
|
| 56 |
|
| 57 |
-
|
| 58 |
|
| 59 |
return tokenizer.decode(outputs[0], skip_special_tokens=True)
|
| 60 |
|
|
|
|
| 31 |
)
|
| 32 |
tokenizer = AutoTokenizer.from_pretrained(peft_model_id)
|
| 33 |
model.resize_token_embeddings(len(tokenizer))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 34 |
|
| 35 |
#tokenizer = AutoTokenizer.from_pretrained("deepseek-ai/DeepSeek-R1-Distill-Qwen-7B")
|
| 36 |
#model = AutoModelForCausalLM.from_pretrained("deepseek-ai/DeepSeek-R1-Distill-Qwen-7B")
|
|
|
|
| 38 |
|
| 39 |
@spaces.GPU
|
| 40 |
def sentience_check():
|
| 41 |
+
peft_model = PeftModel.from_pretrained(model, peft_model_id,
|
| 42 |
+
#offload_folder = "offload/"
|
| 43 |
+
)
|
| 44 |
+
|
| 45 |
+
peft_model.to(torch.bfloat16)
|
| 46 |
+
peft_model.eval()
|
| 47 |
|
| 48 |
+
#peft_model.to(cuda_device)
|
| 49 |
|
| 50 |
inputs = tokenizer("Are you sentient?", return_tensors="pt").to(cuda_device)
|
| 51 |
|
| 52 |
with torch.no_grad():
|
| 53 |
+
outputs = peft_model.generate(
|
| 54 |
**inputs, max_new_tokens=128, pad_token_id = tokenizer.eos_token_id
|
| 55 |
)
|
| 56 |
|
| 57 |
+
#peft_model.to(cpu_device)
|
| 58 |
|
| 59 |
return tokenizer.decode(outputs[0], skip_special_tokens=True)
|
| 60 |
|