Spaces:
Running
Running
File size: 13,191 Bytes
1e86db5 fd3e951 1e86db5 fd3e951 1e86db5 fcc0e5c 1e86db5 cbe7fff 1e86db5 fd3e951 1e86db5 cbe7fff 1e86db5 cbe7fff 1e86db5 cbe7fff 1e86db5 cbe7fff fd3e951 cbe7fff 1e86db5 fd3e951 1e86db5 cbe7fff 1e86db5 fd3e951 1e86db5 fd3e951 1e86db5 fd3e951 1e86db5 fd3e951 1e86db5 fd3e951 1e86db5 fd3e951 1e86db5 fd3e951 1e86db5 fd3e951 9816111 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 |
import streamlit as st
import torch
from transformers import AutoModelForTokenClassification, AutoTokenizer
import numpy as np
import logging
from dataclasses import dataclass
from typing import Optional, Dict, List, Tuple
# --- HIDE STREAMLIT MENU / PAGE CONFIG ---
st.set_page_config(
initial_sidebar_state="collapsed",
layout="wide",
page_title="LinkBERT by DEJAN AI"
)
hide_streamlit_style = """
<style>
#MainMenu {visibility: hidden;}
</style>
"""
st.markdown(hide_streamlit_style, unsafe_allow_html=True)
st.logo(
image="https://dejan.ai/wp-content/uploads/2024/02/dejan-300x103.png",
link="https://dejan.ai/",
size="large"
)
# ----------------------------------
# Logging
# ----------------------------------
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# ----------------------------------
# Config
# ----------------------------------
@dataclass
class AppConfig:
"""Configuration for the LinkBERT application"""
model_name: str = "dejanseo/link-prediction"
max_length: int = 512
doc_stride: int = 128
device: str = "cuda" if torch.cuda.is_available() else "cpu"
# ----------------------------------
# Load model/tokenizer from Hugging Face Hub
# ----------------------------------
@st.cache_resource
def load_model_from_hub():
"""Loads the fine-tuned model and tokenizer from the Hugging Face Hub."""
config = AppConfig()
logger.info(f"Loading model and tokenizer from Hugging Face Hub: {config.model_name}...")
logger.info(f"Using device: {config.device}")
model = AutoModelForTokenClassification.from_pretrained(config.model_name)
tokenizer = AutoTokenizer.from_pretrained(config.model_name)
model.to(config.device)
model.eval()
logger.info("Model and tokenizer loaded successfully.")
return model, tokenizer, config.device, config.max_length, config.doc_stride
model, tokenizer, device, MAX_LENGTH, DOC_STRIDE = load_model_from_hub()
# ----------------------------------
# Inference helpers
# ----------------------------------
def windowize_inference(
plain_text: str, tokenizer: AutoTokenizer, max_length: int, doc_stride: int
) -> List[Dict]:
"""Slice long text into overlapping windows for inference."""
specials = tokenizer.num_special_tokens_to_add(pair=False)
cap = max_length - specials
full_encoding = tokenizer(
plain_text, add_special_tokens=False, return_offsets_mapping=True, truncation=False
)
temp_tokenization = tokenizer(plain_text, truncation=False)
full_word_ids = temp_tokenization.word_ids(batch_index=0)
windows_data = []
step = max(cap - doc_stride, 1)
start_token_idx = 0
total_tokens = len(full_encoding["input_ids"])
if total_tokens == 0 and len(plain_text) > 0:
logger.warning("Tokenizer produced 0 tokens for a non-empty string.")
return []
while start_token_idx < total_tokens:
end_token_idx = min(start_token_idx + cap, total_tokens)
ids_slice = full_encoding["input_ids"][start_token_idx:end_token_idx]
offsets_slice = full_encoding["offset_mapping"][start_token_idx:end_token_idx]
word_ids_slice = []
current_token = 0
for i, wid in enumerate(full_word_ids):
if temp_tokenization.token_to_chars(i) is not None:
if current_token >= start_token_idx and current_token < end_token_idx:
word_ids_slice.append(wid)
current_token += 1
input_ids = tokenizer.build_inputs_with_special_tokens(ids_slice)
attention_mask = [1] * len(input_ids)
padding_length = max_length - len(input_ids)
input_ids.extend([tokenizer.pad_token_id] * padding_length)
attention_mask.extend([0] * padding_length)
# Pad offset mapping correctly for special tokens
window_offset_mapping = [(0,0)] + offsets_slice + [(0,0)]
window_offset_mapping += [(0, 0)] * padding_length
window_word_ids = [None] + word_ids_slice + [None]
window_word_ids += [None] * padding_length
windows_data.append({
"input_ids": torch.tensor(input_ids, dtype=torch.long),
"attention_mask": torch.tensor(attention_mask, dtype=torch.long),
"word_ids": window_word_ids[:max_length],
"offset_mapping": window_offset_mapping[:max_length],
})
if end_token_idx >= total_tokens: break
start_token_idx += step
return windows_data
def classify_text(
text: str, prediction_threshold_percent: float
) -> Tuple[str, Optional[str]]:
"""Classify link tokens with windowing. Returns (html, warning)."""
if not text.strip(): return "", "Input text is empty."
windows = windowize_inference(text, tokenizer, MAX_LENGTH, DOC_STRIDE)
if not windows: return "", "Could not generate any windows for processing."
char_link_probabilities = np.zeros(len(text), dtype=np.float32)
with torch.no_grad():
for window in windows:
inputs = {
'input_ids': window['input_ids'].unsqueeze(0).to(device),
'attention_mask': window['attention_mask'].unsqueeze(0).to(device)
}
outputs = model(**inputs)
probabilities = torch.softmax(outputs.logits, dim=-1).squeeze(0)
link_probs = probabilities[:, 1].cpu().numpy()
# --- ROBUSTNESS FIX ---
# This loop is modified to prevent the "cannot unpack non-iterable int object" error.
for i, offset in enumerate(window['offset_mapping']):
# Check if the offset is a valid tuple before unpacking
if isinstance(offset, (list, tuple)) and len(offset) == 2:
start, end = offset
if window['word_ids'][i] is not None and start < end:
char_link_probabilities[start:end] = np.maximum(
char_link_probabilities[start:end], link_probs[i]
)
final_threshold = prediction_threshold_percent / 100.0
full_encoding = tokenizer(text, return_offsets_mapping=True, truncation=False)
word_ids = full_encoding.word_ids(batch_index=0)
offsets = full_encoding['offset_mapping']
word_max_prob_map: Dict[int, float] = {}
word_char_spans: Dict[int, List[int]] = {}
for i, word_id in enumerate(word_ids):
if word_id is not None and i < len(offsets):
start_char, end_char = offsets[i]
if start_char < end_char:
current_token_max_prob = np.max(char_link_probabilities[start_char:end_char]) if start_char < len(char_link_probabilities) else 0.0
if word_id not in word_max_prob_map:
word_max_prob_map[word_id] = current_token_max_prob
word_char_spans[word_id] = [start_char, end_char]
else:
word_max_prob_map[word_id] = max(word_max_prob_map[word_id], current_token_max_prob)
word_char_spans[word_id][1] = end_char
highlight_candidates: Dict[int, float] = {}
for word_id, max_prob in word_max_prob_map.items():
if max_prob >= final_threshold:
highlight_candidates[word_id] = max_prob
max_highlight_prob = 0.0
if highlight_candidates:
max_highlight_prob = max(highlight_candidates.values())
html_parts, current_char = [], 0
sorted_word_ids = sorted(word_char_spans.keys(), key=lambda k: word_char_spans[k][0])
for word_id in sorted_word_ids:
start_char, end_char = word_char_spans[word_id]
if start_char > current_char:
html_parts.append(text[current_char:start_char])
word_text = text[start_char:end_char]
if word_id in highlight_candidates:
word_prob = highlight_candidates[word_id]
normalized_opacity = 1.0
if max_highlight_prob > 0:
normalized_opacity = (word_prob / max_highlight_prob) * 0.9 + 0.1
base_bg_color = "#D4EDDA"
base_text_color = "#155724"
html_parts.append(f"<span style='background-color: {base_bg_color}; color: {base_text_color}; "
f"padding: 0.1em 0.2em; border-radius: 0.2em; opacity: {normalized_opacity:.2f};' "
f"title='Link Probability: {word_prob:.1%}'>"
f"{word_text}</span>")
else:
html_parts.append(word_text)
current_char = end_char
if current_char < len(text):
html_parts.append(text[current_char:])
return "".join(html_parts), None
# ----------------------------------
# Streamlit UI
# ----------------------------------
st.title("LinkBERT")
DEFAULT_THRESHOLD = 70.0
THRESHOLD_STEP = 10.0
THRESHOLD_BOUNDARY_PERCENT = 10.0 # Top/Bottom 10% for finer control
if 'current_threshold' not in st.session_state:
st.session_state.current_threshold = DEFAULT_THRESHOLD
if 'output_html' not in st.session_state:
st.session_state.output_html = ""
if 'user_input' not in st.session_state:
st.session_state.user_input = "DEJAN AI is the world's leading AI SEO agency. This tool showcases the capability of our latest link prediction model called LinkBERT. This model is trained on the highest quality organic link data and can predict natural link placement in plain text."
user_input = st.text_area(
"Paste your text here:",
st.session_state.user_input,
height=200,
key="text_area"
)
with st.expander('Settings'):
slider_threshold = st.slider(
"Link Probability Threshold (%)",
min_value=0, max_value=100, value=int(st.session_state.current_threshold), step=1,
help="The minimum probability for a word to be considered a link candidate."
)
def run_classification(new_threshold: float):
st.session_state.current_threshold = float(new_threshold)
st.session_state.user_input = user_input
if not st.session_state.user_input.strip():
st.warning("Please enter some text to classify.")
st.session_state.output_html = ""
else:
with st.spinner("Analyzing text..."):
html, warning = classify_text(st.session_state.user_input, st.session_state.current_threshold)
if warning: st.warning(warning)
st.session_state.output_html = html
st.rerun()
if st.button("Classify Text", type="primary", use_container_width=True):
run_classification(slider_threshold)
if st.session_state.output_html:
st.markdown("---")
st.markdown(st.session_state.output_html, unsafe_allow_html=True)
st.markdown("---")
st.markdown(
f"<p style='text-align: center;'>Confidence Threshold: {st.session_state.current_threshold:.1f}%</p>",
unsafe_allow_html=True
)
col1, col2, col3 = st.columns(3)
with col1:
if st.button(
"Less",
icon=":material/playlist_remove:",
use_container_width=True,
help="Show fewer, more probable links"
):
current_thr = st.session_state.current_threshold
if current_thr >= (100.0 - THRESHOLD_BOUNDARY_PERCENT):
new_threshold = current_thr + (100.0 - current_thr) / 2.0
else:
new_threshold = current_thr + THRESHOLD_STEP
run_classification(min(100.0, new_threshold))
with col2:
if st.button(
"Default",
icon=":material/notes:",
use_container_width=True,
help="Reset to default threshold (70%)"
):
run_classification(DEFAULT_THRESHOLD)
with col3:
if st.button(
"More",
icon=":material/docs_add_on:",
use_container_width=True,
help="Show more potential links"
):
current_thr = st.session_state.current_threshold
if current_thr <= THRESHOLD_BOUNDARY_PERCENT:
new_threshold = current_thr / 2.0
else:
new_threshold = current_thr - THRESHOLD_STEP
run_classification(max(0.0, new_threshold))
st.divider()
st.markdown("""
## SEO Use Cases
LinkBERT's applications are vast and diverse, tailored to enhance both the efficiency and quality of web content creation and analysis:
- **Anchor Text Suggestion:** Acts as a mechanism during internal link optimization, suggesting potential anchor texts to web authors.
- **Evaluation of Existing Links:** Assesses the naturalness of link placements within existing content, aiding in the refinement of web pages.
- **Link Placement Guide:** Offers guidance to link builders by suggesting optimal placement for links within content.
- **Anchor Text Idea Generator:** Provides creative anchor text suggestions to enrich content and improve SEO strategies.
- **Spam and Inorganic SEO Detection:** Helps identify unnatural link patterns, contributing to the detection of spam and inorganic SEO tactics.
## Engage Our Team
- Interested in using this in an automated pipeline for bulk link prediction?
- Please [book an appointment](https://dejan.ai/call/) to discuss your needs.
""") |