Update app.py
Browse files
app.py
CHANGED
|
@@ -16,7 +16,6 @@ st.set_page_config(
|
|
| 16 |
|
| 17 |
MODEL_ID = "dejanseo/QDF-large"
|
| 18 |
HF_TOKEN = os.getenv("HF_TOKEN")
|
| 19 |
-
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 20 |
|
| 21 |
model = AutoModelForSequenceClassification.from_pretrained(
|
| 22 |
MODEL_ID,
|
|
@@ -24,11 +23,8 @@ model = AutoModelForSequenceClassification.from_pretrained(
|
|
| 24 |
low_cpu_mem_usage=True
|
| 25 |
).eval()
|
| 26 |
|
| 27 |
-
|
| 28 |
tokenizer = AutoTokenizer.from_pretrained(MODEL_ID, token=HF_TOKEN)
|
| 29 |
|
| 30 |
-
model.eval()
|
| 31 |
-
|
| 32 |
def classify(prompt: str):
|
| 33 |
inputs = tokenizer(
|
| 34 |
prompt,
|
|
@@ -37,7 +33,6 @@ def classify(prompt: str):
|
|
| 37 |
padding=True,
|
| 38 |
max_length=512
|
| 39 |
)
|
| 40 |
-
|
| 41 |
with torch.no_grad():
|
| 42 |
logits = model(**inputs).logits
|
| 43 |
probs = torch.softmax(logits, dim=-1).squeeze().cpu()
|
|
|
|
| 16 |
|
| 17 |
MODEL_ID = "dejanseo/QDF-large"
|
| 18 |
HF_TOKEN = os.getenv("HF_TOKEN")
|
|
|
|
| 19 |
|
| 20 |
model = AutoModelForSequenceClassification.from_pretrained(
|
| 21 |
MODEL_ID,
|
|
|
|
| 23 |
low_cpu_mem_usage=True
|
| 24 |
).eval()
|
| 25 |
|
|
|
|
| 26 |
tokenizer = AutoTokenizer.from_pretrained(MODEL_ID, token=HF_TOKEN)
|
| 27 |
|
|
|
|
|
|
|
| 28 |
def classify(prompt: str):
|
| 29 |
inputs = tokenizer(
|
| 30 |
prompt,
|
|
|
|
| 33 |
padding=True,
|
| 34 |
max_length=512
|
| 35 |
)
|
|
|
|
| 36 |
with torch.no_grad():
|
| 37 |
logits = model(**inputs).logits
|
| 38 |
probs = torch.softmax(logits, dim=-1).squeeze().cpu()
|