Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
|
@@ -3,201 +3,126 @@ import torch
|
|
| 3 |
import torch.nn.functional as F
|
| 4 |
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
| 5 |
import re
|
| 6 |
-
import logging
|
| 7 |
|
| 8 |
-
# Set up logging
|
| 9 |
logging.basicConfig(level=logging.INFO)
|
| 10 |
logger = logging.getLogger(__name__)
|
| 11 |
|
| 12 |
-
#
|
| 13 |
st.set_page_config(
|
| 14 |
page_title="AI Article Detection by DEJAN",
|
| 15 |
page_icon="🧠",
|
| 16 |
layout="wide"
|
| 17 |
)
|
| 18 |
|
| 19 |
-
# Logo
|
| 20 |
-
st.
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
|
|
|
|
|
|
|
|
|
| 24 |
)
|
| 25 |
|
| 26 |
-
#
|
| 27 |
st.markdown("""
|
| 28 |
<link href="https://fonts.googleapis.com/css2?family=Roboto&display=swap" rel="stylesheet">
|
| 29 |
<style>
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
</style>
|
| 34 |
""", unsafe_allow_html=True)
|
| 35 |
|
| 36 |
-
@st.cache_resource
|
| 37 |
def load_model_and_tokenizer(model_name):
|
| 38 |
-
"""Loads the model and tokenizer."""
|
| 39 |
-
logger.info(f"Loading tokenizer: {model_name}")
|
| 40 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 41 |
|
| 42 |
-
# Determine device
|
| 43 |
-
device_type = "cuda" if torch.cuda.is_available() else "cpu"
|
| 44 |
-
# Use bfloat16 if available on CUDA for potential speedup/memory saving, else float32
|
| 45 |
-
dtype = torch.bfloat16 if torch.cuda.is_available() and torch.cuda.is_bf16_supported() else torch.float32
|
| 46 |
-
logger.info(f"Using device: {device_type} with dtype: {dtype}")
|
| 47 |
-
|
| 48 |
-
logger.info(f"Loading model: {model_name}")
|
| 49 |
-
# Load model onto CPU first, then move to target device
|
| 50 |
-
model = AutoModelForSequenceClassification.from_pretrained(
|
| 51 |
-
model_name,
|
| 52 |
-
torch_dtype=dtype # Use the determined dtype
|
| 53 |
-
# Removed device_map="auto"
|
| 54 |
-
)
|
| 55 |
-
logger.info("Moving model to target device...")
|
| 56 |
-
model.to(torch.device(device_type)) # Move the entire model to the target device
|
| 57 |
-
model.eval() # Set model to evaluation mode
|
| 58 |
-
logger.info("Model loaded successfully.")
|
| 59 |
-
return tokenizer, model, torch.device(device_type)
|
| 60 |
-
|
| 61 |
-
# Load model and tokenizer using the cached function
|
| 62 |
MODEL_NAME = "dejanseo/ai-detection-small"
|
| 63 |
try:
|
| 64 |
tokenizer, model, device = load_model_and_tokenizer(MODEL_NAME)
|
| 65 |
except Exception as e:
|
| 66 |
st.error(f"Error loading model: {e}")
|
| 67 |
-
logger.error(
|
| 68 |
-
st.stop()
|
| 69 |
|
| 70 |
-
|
| 71 |
-
# Static settings
|
| 72 |
LABELS = ["AI Content", "Human Content"]
|
| 73 |
-
COLORS = ["#ffe5e5", "#e6ffe6"] # light red, light green
|
| 74 |
|
| 75 |
-
#
|
| 76 |
def sent_tokenize(text):
|
| 77 |
-
|
| 78 |
-
sentences = re.split(r'(?<=[.!?])\s+', text.strip())
|
| 79 |
-
# Filter out empty strings that might result from splitting
|
| 80 |
return [s for s in sentences if s]
|
| 81 |
|
| 82 |
-
|
| 83 |
-
sentences = sent_tokenize(text)
|
| 84 |
-
if not sentences:
|
| 85 |
-
return [] # Handle empty input after tokenization
|
| 86 |
-
|
| 87 |
-
chunks, current_chunk_sentences, current_len = [], [], 0
|
| 88 |
-
max_tokens = max_length - 2 # Account for [CLS] and [SEP] tokens
|
| 89 |
-
|
| 90 |
-
for sent in sentences:
|
| 91 |
-
# Use tokenizer.encode to get accurate token count (more reliable than tokenize)
|
| 92 |
-
token_ids = tokenizer.encode(sent, add_special_tokens=False)
|
| 93 |
-
token_len = len(token_ids)
|
| 94 |
-
|
| 95 |
-
if token_len > max_tokens:
|
| 96 |
-
# Sentence is too long even by itself, handle appropriately
|
| 97 |
-
# Option 1: Truncate the sentence (simplest)
|
| 98 |
-
logger.warning(f"Sentence truncated as it exceeds max_length: '{sent[:100]}...'")
|
| 99 |
-
truncated_sent = tokenizer.decode(token_ids[:max_tokens])
|
| 100 |
-
# If there was a previous chunk, add it first
|
| 101 |
-
if current_chunk_sentences:
|
| 102 |
-
chunks.append(" ".join(current_chunk_sentences))
|
| 103 |
-
chunks.append(truncated_sent) # Add the single truncated sentence as its own chunk
|
| 104 |
-
current_chunk_sentences, current_len = [], 0 # Reset chunk
|
| 105 |
-
continue # Move to the next sentence
|
| 106 |
-
|
| 107 |
-
if current_len + token_len <= max_tokens:
|
| 108 |
-
current_chunk_sentences.append(sent)
|
| 109 |
-
current_len += token_len
|
| 110 |
-
else:
|
| 111 |
-
# Current chunk is full, finalize it
|
| 112 |
-
if current_chunk_sentences:
|
| 113 |
-
chunks.append(" ".join(current_chunk_sentences))
|
| 114 |
-
# Start a new chunk with the current sentence
|
| 115 |
-
current_chunk_sentences = [sent]
|
| 116 |
-
current_len = token_len
|
| 117 |
-
|
| 118 |
-
# Add the last remaining chunk
|
| 119 |
-
if current_chunk_sentences:
|
| 120 |
-
chunks.append(" ".join(current_chunk_sentences))
|
| 121 |
-
|
| 122 |
-
return chunks
|
| 123 |
-
|
| 124 |
-
# --- UI ---
|
| 125 |
st.title("AI Article Detection")
|
| 126 |
-
text = st.text_area("Enter text to classify", height=
|
| 127 |
|
| 128 |
if st.button("Classify", type="primary"):
|
| 129 |
-
if not text
|
| 130 |
st.warning("Please enter some text.")
|
| 131 |
else:
|
| 132 |
-
with st.spinner("Analyzing...
|
| 133 |
try:
|
| 134 |
-
|
| 135 |
-
|
| 136 |
-
|
| 137 |
-
|
| 138 |
-
if not chunks:
|
| 139 |
-
st.warning("Could not process the input text (perhaps it's too short or contains only delimiters?).")
|
| 140 |
-
st.stop()
|
| 141 |
|
| 142 |
-
# Tokenize
|
| 143 |
inputs = tokenizer(
|
| 144 |
-
|
| 145 |
return_tensors="pt",
|
| 146 |
-
padding=True,
|
| 147 |
-
truncation=True,
|
| 148 |
-
max_length=model.config.max_position_embeddings
|
| 149 |
-
).to(device)
|
| 150 |
|
| 151 |
-
#
|
| 152 |
with torch.no_grad():
|
| 153 |
outputs = model(**inputs)
|
| 154 |
logits = outputs.logits
|
| 155 |
-
|
| 156 |
-
|
| 157 |
-
|
| 158 |
-
|
| 159 |
-
|
| 160 |
-
|
| 161 |
-
|
| 162 |
-
|
| 163 |
-
|
| 164 |
-
|
| 165 |
-
"label": LABELS[pred_index],
|
| 166 |
-
"color": COLORS[pred_index],
|
| 167 |
-
"conf": probs[i, pred_index].item() * 100, # Get confidence for the predicted class
|
| 168 |
-
})
|
| 169 |
-
|
| 170 |
-
# Calculate overall prediction based on average probability across chunks
|
| 171 |
-
if probs.numel() > 0: # Check if probs tensor is not empty
|
| 172 |
-
avg_probs = torch.mean(probs, dim=0) # Average probabilities across the batch dimension
|
| 173 |
-
final_class_index = torch.argmax(avg_probs).item()
|
| 174 |
-
final_label = LABELS[final_class_index]
|
| 175 |
-
final_conf = avg_probs[final_class_index].item() * 100
|
| 176 |
-
|
| 177 |
-
# Display final prediction
|
| 178 |
-
st.subheader("📊 Final Prediction")
|
| 179 |
-
st.markdown(
|
| 180 |
-
f"<div style='background-color:{COLORS[final_class_index]}; padding:1rem; border-radius:0.5rem; border: 1px solid #ccc;'>"
|
| 181 |
-
f"Based on the analysis, the text is most likely: <b>{final_label}</b> (Confidence: {final_conf:.1f}%)</div>",
|
| 182 |
-
unsafe_allow_html=True
|
| 183 |
-
)
|
| 184 |
-
else:
|
| 185 |
-
st.warning("Could not generate predictions for the provided text.")
|
| 186 |
-
|
| 187 |
-
|
| 188 |
-
# Display per-chunk predictions in an expander
|
| 189 |
-
with st.expander("See per-chunk predictions and confidence"):
|
| 190 |
-
if chunk_results:
|
| 191 |
-
for result in chunk_results:
|
| 192 |
-
st.markdown(
|
| 193 |
-
f"<div title='Confidence: {result['conf']:.1f}%' "
|
| 194 |
-
f"style='background-color:{result['color']}; padding:0.75rem; margin-bottom:0.5rem; border-radius:0.5rem; border: 1px solid #ddd;'>"
|
| 195 |
-
f"<i>({result['label']} - {result['conf']:.1f}%)</i><br>{result['text']}</div>",
|
| 196 |
-
unsafe_allow_html=True
|
| 197 |
-
)
|
| 198 |
else:
|
| 199 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 200 |
|
| 201 |
except Exception as e:
|
| 202 |
-
st.error(f"
|
| 203 |
-
logger.error(
|
|
|
|
| 3 |
import torch.nn.functional as F
|
| 4 |
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
| 5 |
import re
|
| 6 |
+
import logging
|
| 7 |
|
| 8 |
+
# Set up logging
|
| 9 |
logging.basicConfig(level=logging.INFO)
|
| 10 |
logger = logging.getLogger(__name__)
|
| 11 |
|
| 12 |
+
# Streamlit page config
|
| 13 |
st.set_page_config(
|
| 14 |
page_title="AI Article Detection by DEJAN",
|
| 15 |
page_icon="🧠",
|
| 16 |
layout="wide"
|
| 17 |
)
|
| 18 |
|
| 19 |
+
# Logo
|
| 20 |
+
st.markdown(
|
| 21 |
+
"""
|
| 22 |
+
<a href="https://dejan.ai/" target="_blank">
|
| 23 |
+
<img src="https://dejan.ai/wp-content/uploads/2024/02/dejan-300x103.png" alt="DEJAN logo">
|
| 24 |
+
</a>
|
| 25 |
+
""",
|
| 26 |
+
unsafe_allow_html=True
|
| 27 |
)
|
| 28 |
|
| 29 |
+
# Custom font
|
| 30 |
st.markdown("""
|
| 31 |
<link href="https://fonts.googleapis.com/css2?family=Roboto&display=swap" rel="stylesheet">
|
| 32 |
<style>
|
| 33 |
+
html, body, [class*="css"] {
|
| 34 |
+
font-family: 'Roboto', sans-serif;
|
| 35 |
+
}
|
| 36 |
</style>
|
| 37 |
""", unsafe_allow_html=True)
|
| 38 |
|
| 39 |
+
@st.cache_resource
|
| 40 |
def load_model_and_tokenizer(model_name):
|
|
|
|
|
|
|
| 41 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 42 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 43 |
+
dtype = torch.bfloat16 if (device.type == "cuda" and torch.cuda.is_bf16_supported()) else torch.float32
|
| 44 |
+
model = AutoModelForSequenceClassification.from_pretrained(model_name, torch_dtype=dtype)
|
| 45 |
+
model.to(device)
|
| 46 |
+
model.eval()
|
| 47 |
+
return tokenizer, model, device
|
| 48 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 49 |
MODEL_NAME = "dejanseo/ai-detection-small"
|
| 50 |
try:
|
| 51 |
tokenizer, model, device = load_model_and_tokenizer(MODEL_NAME)
|
| 52 |
except Exception as e:
|
| 53 |
st.error(f"Error loading model: {e}")
|
| 54 |
+
logger.error("Failed to load model or tokenizer", exc_info=True)
|
| 55 |
+
st.stop()
|
| 56 |
|
| 57 |
+
# Labels
|
|
|
|
| 58 |
LABELS = ["AI Content", "Human Content"]
|
|
|
|
| 59 |
|
| 60 |
+
# Sentence splitter
|
| 61 |
def sent_tokenize(text):
|
| 62 |
+
sentences = re.split(r'(?<=[\.!?])\s+', text.strip())
|
|
|
|
|
|
|
| 63 |
return [s for s in sentences if s]
|
| 64 |
|
| 65 |
+
# UI
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 66 |
st.title("AI Article Detection")
|
| 67 |
+
text = st.text_area("Enter text to classify", height=200)
|
| 68 |
|
| 69 |
if st.button("Classify", type="primary"):
|
| 70 |
+
if not text.strip():
|
| 71 |
st.warning("Please enter some text.")
|
| 72 |
else:
|
| 73 |
+
with st.spinner("Analyzing..."):
|
| 74 |
try:
|
| 75 |
+
sentences = sent_tokenize(text)
|
| 76 |
+
if not sentences:
|
| 77 |
+
st.warning("No sentences detected.")
|
| 78 |
+
st.stop()
|
|
|
|
|
|
|
|
|
|
| 79 |
|
| 80 |
+
# Tokenize each sentence
|
| 81 |
inputs = tokenizer(
|
| 82 |
+
sentences,
|
| 83 |
return_tensors="pt",
|
| 84 |
+
padding=True,
|
| 85 |
+
truncation=True,
|
| 86 |
+
max_length=model.config.max_position_embeddings
|
| 87 |
+
).to(device)
|
| 88 |
|
| 89 |
+
# Inference
|
| 90 |
with torch.no_grad():
|
| 91 |
outputs = model(**inputs)
|
| 92 |
logits = outputs.logits
|
| 93 |
+
probs = F.softmax(logits, dim=-1).cpu() # shape [n_sentences, 2]
|
| 94 |
+
preds = torch.argmax(probs, dim=-1).cpu()
|
| 95 |
+
|
| 96 |
+
# Build inline styled text
|
| 97 |
+
styled_chunks = []
|
| 98 |
+
for i, sent in enumerate(sentences):
|
| 99 |
+
pred = preds[i].item()
|
| 100 |
+
# select color channel
|
| 101 |
+
if pred == 0:
|
| 102 |
+
r, g = 255, 0 # red for AI
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 103 |
else:
|
| 104 |
+
r, g = 0, 255 # green for Human
|
| 105 |
+
confidence = probs[i, pred].item() # between 0 and 1
|
| 106 |
+
alpha = confidence # drive opacity directly
|
| 107 |
+
# wrap sentence in span
|
| 108 |
+
span = (
|
| 109 |
+
f"<span "
|
| 110 |
+
f"style='background-color: rgba({r},{g},0,{alpha:.2f}); "
|
| 111 |
+
f"padding:2px; margin:0 2px; border-radius:3px;'>"
|
| 112 |
+
f"{sent}"
|
| 113 |
+
f"</span>"
|
| 114 |
+
)
|
| 115 |
+
styled_chunks.append(span)
|
| 116 |
+
|
| 117 |
+
# join all sentences inline
|
| 118 |
+
full_text_html = "".join(styled_chunks)
|
| 119 |
+
st.markdown(full_text_html, unsafe_allow_html=True)
|
| 120 |
+
|
| 121 |
+
# Overall AI likelihood
|
| 122 |
+
avg_probs = torch.mean(probs, dim=0)
|
| 123 |
+
ai_likelihood = avg_probs[0].item() * 100 # class 0 is AI
|
| 124 |
+
st.subheader(f"🤖 AI Likelihood: {ai_likelihood:.1f}%")
|
| 125 |
|
| 126 |
except Exception as e:
|
| 127 |
+
st.error(f"Analysis error: {e}")
|
| 128 |
+
logger.error("Classification failed", exc_info=True)
|